首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polymer nanoporous materials with periodic cylindrical holes were fabricated from microphase‐separated structure of diblock copolymers consisting of a radiation‐crosslinking polymer and a radiation‐degrading polymer through simultaneous crosslinking and degradation by γ‐irradiation. A polybutadiene‐block‐poly(methyl methacrylate) (PB‐b‐PMMA) diblock copolymer film that self‐assembles into hexagonally packed poly(methyl methacrylate) cylinders in polybutadiene matrix was irradiated with γ‐rays. Solubility test, IR spectroscopy, and TEM and SEM observations for this copolymer film in comparison with a polystyrene‐block‐poly(methyl methacrylate) diblock copolymer film revealed that poly(methyl methacrylate) domains were removed by γ‐irradiation and succeeding solvent washing to form cylindrical holes within polybutadiene matrix, which was rigidified by radiation crosslinking. Thus, it was demonstrated that nanoporous materials can be prepared by γ‐irradiation, maintaining the original structure of PB‐b‐PMMA diblock copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5916–5922, 2007  相似文献   

2.
The amphiphilic organoboron block copolymer poly (styreneboronic acid)‐block‐polystyrene ( PSBA‐b‐PS ) has been prepared through a postpolymerization modification route from the silicon‐functionalized block copolymer poly(4‐trimethylsilylstyrene)‐block‐polystyrene ( PSSi‐b‐PS ). PSBA‐b‐PS is obtained through highly selective reaction of PSSi‐b‐PS with BBr3 at room temperature and subsequent hydrolysis of the BBr2‐functionalized intermediate. Transmission electron microscopy studies demonstrate that PSBA‐b‐PS undergoes pH dependent micellization in aqueous solution. Different morphologies could be realized by using different mixtures of water and organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2438–2445, 2010  相似文献   

3.
This article reports a practical method for preparing cis‐polybutadiene‐blocksyn‐polystyrene (cis‐PB‐bsyn‐PS) copolymers with long crystallizable syndiotactic polystyrene (syn‐PS) segments chemically bonded with high cis‐1,4‐polybutadiene segments through the addition of styrene (ST) to a cis‐specific 1,3‐butadiene (BD) living catalyst composed of cyclopentadienyl titanium trichloride (CpTiCl3) and modified methylaluminoxane (MMAO). The incorporation of ST into the living polybutadiene (PB) precursor remarkably depended on the polymerization temperature. A low temperature (?20 °C) suppressed the rate of ST incorporation, but a high temperature (50 °C) tended to decompose the livingness of the active species and enhance the rate of the aspecific ST polymerization initiated by MMAO. Consequently, temperatures of 0–25 °C seemed to be best for this copolymerization system. Because of the absence of ST livingness, the final products contained not only the block copolymer but also the homopolymers. Attempts to isolate the block copolymer were carried out with common solvent fractionation techniques, but the results were not sufficient. Cross‐fractionation chromatography was, therefore, used for the isolation of the cis‐PB‐bsyn‐PS copolymer. The presence of long syn‐PS segments was confirmed by the observation of a strong endothermic peak at 260 °C in the differential scanning calorimetry curve. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2698–2704, 2004  相似文献   

4.
The surface modification of polystyrene (PS) by the blending of 4‐acetoxystyrene polymers and their corresponding hydrolysis products, 4‐hydroxystyrene polymers, was investigated on the basis of X‐ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact‐angle measurements. According to XPS and AFM measurements, when polystyrene‐block‐poly(4‐acetoxystyrene) (PS‐b‐PAS) or polystyrene‐block‐poly(4‐hydroxystyrene) (PS‐b‐PHS) was incorporated into PS, the block copolymer was preferentially segregated at the highest surface region of the blend. This segregation increased to a plateau value when more than 5 wt % of either PS‐b‐PHS or PS‐b‐PAS was added. The contact angle of the modified PS by PS‐b‐PAS or PS‐b‐PHS was slightly lower than that of homopolystyrene, but no further decrease was observed with the blend ratio of the diblock copolymer increasing from 5 to 20 wt %. For a PS/PS‐b‐PHS blend, the surface atomic concentration ratio O/C increased linearly with the molecular weight of poly(4‐hydroxystyrene) blocks in diblock copolymer PS‐b‐PHS in the range of our study. The different structures of 4‐acetoxystyrene polymers and their hydrazinolyzed materials may affect the surface compositions of their blends with PS; among these polymers, PS‐b‐PHS and PS‐b‐PAS appeared to be most effective. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1046–1054, 2001  相似文献   

5.
Porous poly(methyl silsesquioxane) (PMSSQ) films were prepared from PMSSQ/amphiphilic block copolymer (ABC) hybrids, and this was followed by spin coating and multistep baking. The ABCs were poly(styrene‐block‐acrylic acid) (PS‐b‐PAA) and poly(styrene‐block‐3‐trimethoxysilylpropyl methacrylate) (PS‐b‐PMSMA), which were synthesized by living polymerization. The chemical bonding between the ABCs and PMSSQ resulted in significant differences in the morphologies and properties of the hybrids and their porous derivatives. Both intramolecular and intermolecular hydrogen bonding existed in the PMSSQ/PS‐b‐PAA hybrid and led to macrophase separation. Through the modification of the chemical structure from the poly(acrylic acid) segment to PMSMA, covalent bonding between PMSSQ and PMSMA occurred and prevented the macrophase separation and initial pyrolysis of the ABC. Modulated differential scanning calorimetry results also suggested a significant difference in the miscibility of the two hybrid systems. The chemical bonding resulted in higher retardation of the symmetry‐to‐nonsymmetry Si? O? Si structural transformation for PMSSQ/PS‐b‐PMSMA than for PMSSQ/PS‐b‐PAA according to Fourier transform infrared studies. The pore size of the nanoporous thin film from the PMSSQ/PS‐b‐PMSMA hybrid was estimated by transmission electron microscopy to be less than 15 nm. The refractive index and dielectric constant of the prepared porous films decreased from 1.354 to 1.226 and from 2.603 to 1.843 as the PS‐b‐PMSMA loading increased from 0 to 50 wt %, respectively. This study suggests that chemical bonding in hybrid materials plays a significant role in the preparation of low‐dielectric‐constant nanoporous films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4466–4477, 2004  相似文献   

6.
The amphiphilic cyclic poly(ethylene oxide)‐block‐polystyrene [c‐(PEO‐b‐PS)] was synthesized by cyclization of propargyl‐telechelic poly(ethylene oxide)‐block‐polystyrene‐block‐poly(ethylene oxide) (?? PEO‐b‐PS‐b‐PEO? ?) via the Glaser coupling. The hydroxyl‐telechelic ABA triblock PEO‐b‐PS‐b‐PEO was first prepared by successive living anionic polymerization of styrene and ring‐opening polymerization of ethylene oxide, and then the hydroxyl ends were reacted with propargyl bromide to obtain linear precursors with propargyl terminals. Finally, the intramolecular cyclization was conducted in pyridine under high dilution by Glaser coupling of propargyl ends in the presence of CuBr under ambient temperature, and the c‐(PEO‐b‐PS) was directly obtained by precipitation in petroleum ether with high efficiency. The cyclic products and their corresponding linear precursor ?? PEO‐b‐PS‐b‐PEO? ? were characterized by means of GPC, 1H NMR, and FTIR. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Doubly thermoresponsive ABC brush‐linear‐linear triblock copolymer nanoparticles of poly[poly(ethylene glycol) methyl ether vinylphenyl]‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene [P(mPEGV)‐b‐PNIPAM‐b‐PS] containing two thermoresponsive blocks of poly[poly(ethylene glycol) methyl ether vinylphenyl] [P(mPEGV)] and poly(N‐isopropylacrylamide) (PNIPAM) are prepared by macro‐RAFT agent mediated dispersion polymerization. The P(mPEGV)‐b‐PNIPAM‐b‐PS nanoparticles exhibit two separate lower critical solution temperatures or phase‐transition temperatures (PTTs) corresponding to the linear PNIPAM block and the brush P(mPEGV) block in water. Upon temperature increasing above the first and then the second PTT, the hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles undergoes an initial shrinkage at the first PTT and the subsequent shrinkage at the second PTT. The effect of the chain length of the PNIPAM block on the thermoresponsive behavior of the triblock copolymer nanoparticles is investigated. It is found that, the longer chains of the thermoresponsive PNIPAM block, the greater contribution on the transmittance change of the aqueous dispersion of the triblock copolymer nanoparticles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2266–2278  相似文献   

8.
Novel amphiphilic fluorinated ABC‐type triblock copolymers composed of hydrophilic poly(ethylene oxide) monomethyl ether (MeOPEO), hydrophobic polystyrene (PSt), and hydrophobic/lipophobic poly(perfluorohexylethyl acrylate) (PFHEA) were synthesized by atom transfer radical polymerization (ATRP) using N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst system. The bromide‐terminated diblock copolymers poly(ethylene oxide)‐block‐polystyrene (MeOPEO‐b‐PSt‐Br) were prepared by the ATRP of styrene initiated with the macroinitiator MeOPEO‐Br, which was obtained by the esterification of poly(ethylene oxide) monomethyl ether (MeOPEO) with 2‐bromoisobutyryl bromide. A fluorinated block of poly(perfluorohexylethyl acrylate) (PFHEA) was then introduced into the diblock copolymer by a second ATRP process to synthesize a novel ABC‐type triblock copolymer, poly(ethylene oxide)‐block‐polystyrene‐block‐poly(perfluorohexylethyl acrylate) (MeOPEO‐b‐PSt‐b‐PFHEA). These block copolymers were characterized by means of proton nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC). Water contact angle measurements revealed that the polymeric coating of the triblock copolymer (MeOPEO‐b‐PSt‐b‐PFHEA) shows more hydrophobic than that of the corresponding diblock copolymer (MeOPEO‐b‐PSt). Bovine serum albumin (BSA) was used as a model protein to evaluate the protein adsorption property and the triblock copolymer coating posseses excellent protein‐resistant character prior to the corresponding diblock copolymer and polydimethylsiloxane. These amphiphilic fluoropolymers can expect to have potential applications for antifouling coatings and antifouling membranes. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
The bulk morphology of poly(1,4‐butadiene)–block–polystyrene–block–poly (ethylene oxide) (PB‐b‐PS‐b‐PEO) and polyethylene–block–polystyrene–block–poly (ethylene oxide) (PE‐b‐PS‐b‐PEO) triblock terpolymers is analyzed under a thermal protocol. This allows the investigation of the morphology during the occurrence of thermal transitions, such as crystallization and melting, which is a neat way of studying the competition between microphase separation and crystallization for the morphology formation. Only one of the studied systems presented a morphological transition upon melting of the PEO and the PE blocks, attributed to the crystallization of the PE block in finite interconnected domains. All the other systems presented no morphological transitions during the thermal scan. The results prove that the crystallization only disrupt the microphases generated in the molten state under very specific circumstances for these block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3197–3206, 2007  相似文献   

10.
With anodic aluminum oxide (AAO) membranes as wetting templates, nanotubes of the cylinder‐forming polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) copolymer were generated. The PS‐b‐PEO solution was introduced into the cylindrical nanopores of an AAO membrane by capillary force and polymeric nanotubes formed after solvent evaporation. Because of the water solubility of the cylindrical PEO microdomains and the orientation of the cylindrical PEO microdomains with respect to the nanotube walls, the nanotubes were permeable to aqueous media. PS‐b‐PEO nanotubes were also prepared on the interior walls of amorphous carbon nanotubes (a‐CNTs). Because of the unique water permeability of the PEO microdomains, an avenue for functionalizing the interior of the a‐CNTs is enabled. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2912–2917, 2007  相似文献   

11.
An approach for the preparation of block copolymer vesicles through ultrasonic treatment of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) micelles under alkaline conditions is reported. PS‐b‐P2VP block copolymers in toluene, a selective solvent for PS, form spherical micelles. If a small amount of NaOH solution is added to the micelles solution during ultrasonic treatment, organic‐inorganic Janus‐like particles composed of the PS‐b‐P2VP block copolymers and NaOH are generated. After removal of NaOH, block copolymer vesicles are obtained. A possible mechanism for the morphological transition from spherical micelles to vesicles or Janus‐like particles is discussed. If the block copolymer micelles contain inorganic precursors, such as FeCl3, hybrid vesicles are formed, which may be useful as biological and chemical sensors or nanostructured templates. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 953–959  相似文献   

12.
Monodisperse functional multiresponsive particles were prepared by encapsulation of an amphiphilic diblock copolymer during the precipitation polymerization of polystyrene and divinylbenzene in one single step. The amphiphilic diblock copolymer employed throughout this study, polystyrene‐b‐poly (dimethylaminoethyl methacrylate) (PS‐b‐PDMAEMA) has been synthesized by ATRP in two consecutive polymerization steps. After encapsulation of the block copolymer within the microsphere, the surface modification of the particle occurs spontaneously upon exposure to water by surface segregation of the hydrophilic PDMAEMA block, thus without any additional post‐polymerization and/or chemical modification steps. The response of the functionalized particles both to pH and temperature was analyzed by potential zeta and DSC measurements. Upon dispersion of the particles in acidic media, the PDMAEMA block in its charged state is soluble and does not exhibit any change by heating. At higher pH values and temperatures above 35 °C (Low Critical Solubility Temperature of the PDMAEMA block) the hydrophilic segment collapses as detected by differential scanning calorimetry. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3523–3533, 2010  相似文献   

13.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

14.
Summary: A convenient three‐step strategy has been developed for the preparation of well‐defined amphiphilic, linear‐hyperbranched block copolymers by hypergrafting. The synthetic procedure is based on a combination of carbanionic polymerization with the alkoxide‐based, controlled ring‐opening multibranching polymerization of glycidol. A linear AB diblock copolymer polystyrene‐block‐polybutadiene (PS‐b‐PB) with narrow polydispersity was obtained by anionic copolymerization. Subsequent hydroxylation by hydroboration led to PS508b‐(PB‐OH)56, used as macroinitiator for the polymerization of glycidol under slow monomer addition conditions.

Structure of the linear‐hyperbranched amphiphilic AB diblock copolymer PS508b‐(PB56hg‐PGx) and an AFM micrograph of its micellar core–shell structure observed after solution casting.  相似文献   


15.
A new photoresponsive amphiphilic triblock copolymer, poly(pyrenylmethyl methacrylate)‐block‐polystyrene‐block‐poly(ethylene oxide) (PPy‐b‐PSt‐b‐PEO), was synthesized using atom‐transfer radical polymerization. Formation of colloidal aggregates of the polymer was observed in solutions under controlled conditions due to the amphiphilic nature of the polymer. Irradiation of the polymer aggregates using UV light resulted in the photodissociation of 1‐pyrenemethanol units from the polymer back‐bone resulting in break‐up of the aggregates mainly due to the hydrophilic nature of the residual polymer. The use of these polymer aggregates to trap hydrophobic fluorescent dyes in water and its controlled release on exposure to UV light has also been explored. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
A polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) exhibiting a well‐defined structure was prepared combining anionic polymerization and mercaptan/ε‐caprolactam living polymerization. To evaluate how this block copolymer affected the crystallization of polylactide (PLA), 0.5 wt % thiol‐terminated PS homopolymer (PSSH), PMMA, and PS‐b‐PMMA was melt‐blended with PLA. The calorimetric characterization of the nonisothermal and isothermal crystallization behavior was analyzed according to Avrami's theory, indicating that PS‐b‐PMMA more effectively increased the crystallization kinetics of the PLA matrix than did PSSH or PMMA. The results revealed that the synergistic effect of the PS and PMMA blocks appeared only when they were simultaneously presented in the PLA matrix. The PS block increased the number of nucleation sites and decreased the spherulite size, whereas the PMMA block facilitated the excellent dispersion of PS‐b‐PMMA in the PLA matrix as shown in polarizing optical microscope experiments. Incorporating PS‐b‐PMMA improved the PLA crystallization rate by promoting heterogeneous nucleation. In addition, incorporating 0.5 wt % PS‐b‐PMMA increased the relative crystallinity of PLA to 43.5%, and decreased the crystallization half‐time to 2.4 min when the blend was isothermal at 105 °C. The PLA crystal structure was unchanged by the presence of PS‐b‐PMMA; however, the crystallization rate was enhanced as probed by SEM and X‐ray diffraction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 823–832  相似文献   

17.
The stress–strain diagrams and ultimate tensile properties of uncompatibilized and compatibilized hydrogenated polybutadiene‐block‐poly(methyl methacrylate) (HPB‐b‐PMMA) blends with 20 wt % poly(methyl methacrylate) (PMMA) droplets dispersed in a low‐density polyethylene (LDPE) matrix were studied. The HPB‐b‐PMMA pure diblock copolymer was prepared via controlled living anionic polymerization. Four copolymers, in terms of the molecular weights of the hydrogenated polybutadiene (HPB) and PMMA sequences (22,000–12,000, 63,300–31,700, 49,500–53,500, and 27,700–67,800), were used. We demonstrated with the stress–strain diagrams, in combination with scanning electron microscopy observations of deformed specimens, that the interfacial adhesion had a predominant role in determining the mechanism and extent of blend deformation. The debonding of PMMA particles from the LDPE matrix was clearly observed in the compatibilized blends in which the copolymer was not efficiently located at the interface. The best HPB‐b‐PMMA copolymer, resulting in the maximum improvement of the tensile properties of the compatibilized blend, had a PMMA sequence that was approximately half that of the HPB block. Because of the much higher interactions encountered in the PMMA phase in comparison with those in HPB (LDPE), a shorter sequence of PMMA (with respect to HPB but longer than the critical molecular weight for entanglement) was sufficient to favor a quantitative location of the copolymer at the LDPE/PMMA interface. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 22–34, 2005  相似文献   

18.
Synthesis of the ABA triblock copolymer nanoparticles of poly(N,N‐dimethylacrylamide)‐block‐polystyrene‐block‐poly(N,N‐dimethylacrylamide) (PDMA‐b‐PS‐b‐PDMA) by seeded RAFT polymerization is performed, and the effect of the introduced third poly(N,N‐dimethylacrylamide) (PDMA) block on the size and morphology of the PDMA‐b‐PS‐b‐PDMA triblock copolymer nanoparticles is investigated. This seeded RAFT polymerization affords the in situ synthesis of the PDMA‐b‐PS‐b‐PDMA core‐corona nanoparticles, in which the middle solvophobic PS block forms the compacted core, and the first solvophilic PDMA block and the introduced third PDMA block form the solvated complex corona. During the seeded RAFT polymerization, the introduced third PDMA block extends, and the molecular weight of the PDMA‐b‐PS‐b‐PDMA triblock copolymer linearly increases with the monomer conversion. It is found that, the size of the PS core in the PDMA‐b‐PS‐b‐PDMA triblock copolymer core‐corona nanoparticles is almost equal to that in the precursor of the poly(N,N‐dimethylacrylamide)‐block‐polystyrene diblock copolymer core‐corona nanoparticles and it keeps constant during the seeded RAFT polymerization, and whereas the introduction of the third PDMA block leads to a crowded complex corona on the PS core. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1777–1784  相似文献   

19.
A poly(methyl methacrylate)‐block‐poly(4‐vinylpyridine)‐block‐polystyrene (PMMA‐b‐P4VP‐b‐PS) triblock terpolymer is synthesized by ATRP to study its self‐assembly with PAA in organic solvents. The self‐assembly behavior of this system is compared with the one of a mixture of two diblocks, namely polystyrene‐block‐poly(4‐vinylpyridine) (PS‐b‐P4VP) and poly(methyl methacrylate)‐block‐poly(methacrylic acid) (PMMA‐b‐PMAA). For both systems, formation of hydrogen‐bonded complexes between the P4VP and PMAA or PAA blocks occurs. These complexes become insoluble in the solvent used and micelles with a P4VP/P(M)AA complexes core surrounded by PS and PMMA coronal chains are obtained in both cases. These micelles are analyzed by DLS and TEM. Spherical micelles are formed for both systems but the hydrodynamic radii obtained for the two types of micelles are different. Indeed, the micelles formed by the PMMA‐b‐P4VP‐b‐PS + PAA system are smaller than those observed for the PS‐b‐P4VP + PMMA‐b‐PMAA system. Finally, the effect of the molar ratio of the P4VP/PMAA complexing blocks is investigated. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 459–467  相似文献   

20.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号