首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Amphiphilic polymers consisting of copolymethacrylates carrying about 26 wt % ethylene oxide [(EO)n] side chains of different lengths were used as matrices in gel electrolytes. The gel electrolytes were composed of 30 wt % copolymer and 70 wt % 1 M LiPF6 in a mixture of ethylene carbonate and γ‐butyrolactone (2/1 w/w). The coordination of lithium ions by the (EO)n side chains in competition with the solvent was studied by Raman spectroscopy. A significantly stronger lithium coordination was observed when the gel electrolyte was based on a copolymer carrying (EO)9 units in comparison with copolymers having (EO)1, (EO)2, and (EO)4 units. Despite the observed stronger lithium coordination by (EO)9 units in the gel, the ion conductivity was not significantly lower with respect to the gels based on the other copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1519–1524, 2001  相似文献   

2.
A series of well‐defined amphiphilic graft copolymers bearing hydrophilic poly(ethylene oxide) (PEO) side chains with tunable grafting densities were synthesized by atom transfer nitroxide radical coupling (ATNRC) reaction using CuBr/PMDETA as catalytic system via the grafting‐onto strategy. PEO side chains were linked to α‐C of carbonyl of polyacrylate‐based backbone, not to the ester side groups as usual, so that every repeating unit of the backbone possessed a pendant steric bulky tert‐butyl group. The critical micelle concentrations of the obtained amphiphilic graft copolymers in aqueous media determined by fluorescence probe technique using pyrene as probe increased with the raising of molecular weights. These amphiphilic graft copolymers with novel chemical structure showed unprecedented diverse nanostructures visualized by transmission electron microscopy in aqueous media and micellar morphologies varied with the changing of experiment parameters. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Products of the radical dispersion copolymerization of methacryloyl‐terminated poly(ethylene oxide) (PEO) macromonomer and styrene were separated and characterized by size exclusion chromatography (SEC), full adsorption‐desorption (FAD)/SEC coupling and eluent gradient liquid adsorption chromatography (LAC). In dimethylformamide, which is a good solvent for PEO side chains but a poor solvent for polystyrene (PS), amphiphilic PS‐graft‐PEO copolymers formed aggregates, which were very stable at room temperature even upon substantial dilution. The aggregates disappeared at high temperature or in tetrahydrofuran (THF), which is a good solvent for both homopolymers and for PS‐graft‐PEO. FAD/SEC procedure allowed separation of homo‐PS from graft‐copolymer and determination of both its amount and molar mass. Effective molar mass of graft‐copolymer was estimated directly from the SEC calibration curve determined with PS standards. Presence of larger amount of the homo‐PS in the final graft‐copolymer products was also confirmed with LAC measurements. The results indicate that there are at least two or maybe three polymerization loci; namely the continuous phase, the particle surface layer and the particle core. The graft copolymers are produced mainly in the continuous phase while PS or copolymer rich in styrene units is formed mostly in the core of monomer‐swollen particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2284–2291, 2000  相似文献   

4.
Novel amphiphilic chitosan copolymers with mixed side chains of poly(ε‐caprolactone) and poly(ethylene oxide) (CS‐g‐PCL/PEO) were successfully synthesized by “graft to” approach via click chemistry. The melting and crystallization behaviors and crystalline morphology of CS‐g‐PCL/PEO copolymers can be adjusted by the alteration of the feed ratio of PCL and PEO segments. CS‐g‐PCL/PEO copolymers revealed crystalline morphology different from that of linear alkynyl PCL and alkynyl PEO due to the influence of brush structure of copolymers and the mutual influence of PCL and PEO segments. The hydrophilicity of the CS copolymers can be improved and adjusted by the alteration of the composition of PCL and PEO segments. Moreover, the CS copolymers can self‐assemble into spherical micelles in aqueous solution. Investigation shows that the size of the CS copolymer micelles increased with the increase of the content of hydrophobic PCL segments in copolymers, which indicated that the micellar behavior of the copolymers can be controlled by the adjustment of the ratio of PCL and PEO segments in copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3476–3486, 2010  相似文献   

5.
Two new amphiphilic star graft copolymers bearing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) (PEO) side chains with different molecular weights were synthesized by sequential reversible addition fragmentation chain transfer (RAFT) polymerization and single electron transfer‐nitroxide radical coupling (SET‐NRC) reaction under mild conditions. RAFT homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was mediated by a four‐armed chain transfer agent in a controlled way to afford a well‐defined starlike backbone with a narrow molecular weight distribution (Mw/Mn = 1.26). The target poly(tert‐butyl acrylate)‐g‐PEO (PtBA‐g‐PEO) star graft copolymers were synthesized by SET‐NRC reaction between Br‐containing PtBA‐based starlike backbone and PEO end functionalized with 2,2,6,6‐tetramethylpiperidine‐1‐oxyl (TEMPO) group using copper/N,N,N′,N′,N″‐pentamethyldiethylenetriamine as catalytic system at ambient temperature via grafting‐onto strategy. The critical micelle concentration values of the obtained amphiphilic star graft copolymers in aqueous media and brine were determined by fluorescence probe technique using pyrene as probe. Diverse micellar morphologies were formed by varying the content of hydrophilic PEO segment as well as the initial concentration of stock solution. In addition, poly(acrylic acid)‐g‐PEO double hydrophilic star graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA starlike backbone without affecting PEO side chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

6.
Biodegradable, amphiphilic, four‐armed poly(?‐caprolactone)‐block‐poly(ethylene oxide) (PCL‐b‐PEO) copolymers were synthesized by ring‐opening polymerization of ethylene oxide in the presence of four‐armed poly(?‐caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL‐b‐PEO copolymer was confirmed by 1H NMR and 13C NMR. The hydroxyl end groups of the four‐armed PCL were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four‐armed architecture of the copolymer. Physicochemical properties of the four‐armed block copolymers differed from their starting four‐armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four‐armed block copolymer increased with PEO length and PEO content. The micelle formation of the four‐armed block copolymer was examined by a fluorescent probe technique, and the existence of the critical micelle concentration (cmc) confirmed the amphiphilic nature of the resulting copolymer. The cmc value increased with increasing PEO length. The absolute cmc values were higher than those for linear amphiphilic block copolymers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 950–959, 2004  相似文献   

7.
Poly(styrene-graft-ethylene oxide), having alkyl chains (C12 or C18) on the polystyrene main chain or on the poly(ethylene oxide) (PEO) side chains, were synthesized. The main chain was alkylated by first ionizing amide groups in a styrene/acrylamide copolymer with tert-butoxide, and then using the amide anions as sites for reactions with 1-bromoalkanes. An excess of amide anions was used in the reaction, and the remaining anions were subsequently utilized as initiator sites for the anionic polymerization of ethylene oxide (EO). Synthesis of poly(styrene-graft-ethylene oxide) with alkylated side chains was accomplished by polymerization of EO onto the ionized styrene/acrylamide copolymer, followed by an alkylation of the terminal alkoxide anions with 1-bromoalkanes. The alkylated graft copolymers were structurally characterized by using elemental analysis, 1H NMR, GPC, and IR spectroscopy. DSC analysis showed that only graft copolymers with PEO contents exceeding about 50 wt % and side chain crystallinities comparable to those of homo-PEO. Main chain alkylated graft copolymers generally had higher crystalinities, as compared to nonalkylated and side chain alkylated samples. The graft copolymers absorbed water corresponding to one water molecule per EO unit at low PEO contents. The water absorption increased progressively at PEO contents above 30 wt % for main chain alkylated samples and above 50 wt % for non-alkylated samples. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
A series of new well‐defined amphiphilic graft copolymers containing hydrophobic poly(tert‐butyl acrylate) backbone and hydrophilic poly(ethylene oxide) side chains were reported. Reversible addition‐fragmentation chain transfer homopolymerization of tert‐butyl 2‐((2‐bromopropanoyloxy)methyl)acrylate was first performed to afford a well‐defined backbone with a narrow molecular weight distribution (Mw/Mn = 1.07). The target poly(tert‐butyl acrylate)‐g‐poly(ethylene oxide) (PtBA‐g‐PEO) graft copolymers with low polydispersities (Mw/Mn = 1.18–1.26) were then synthesized by atom transfer nitroxide radical coupling or single electron transfer‐nitroxide radical coupling reaction using CuBr(Cu)/PMDETA as catalytic system. Fluorescence probe technique was employed to determine the critical micelle concentrations (cmc) of the obtained amphiphilic graft copolymers in aqueous media. Furthermore, PAA‐g‐PEO graft copolymers were obtained by selective acidic hydrolysis of hydrophobic PtBA backbone while PEO side chains kept inert. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Degradable, amphiphilic graft copolymers of poly(ε‐caprolactone)‐graft‐poly(ethylene oxide), PCL‐g‐PEO, were synthesized via a grafting onto strategy taking advantage of the ketones presented along the backbone of the statistical copolymer poly(ε‐caprolactone)‐co‐(2‐oxepane‐1,5‐dione), (PCL‐co‐OPD). Through the formation of stable ketoxime ether linkages, 3 kDa PEO grafts and p‐methoxybenzyl side chains were incorporated onto the polyester backbone with a high degree of fidelity and efficiency, as verified by NMR spectroscopies and GPC analysis (90% grafting efficiency in some cases). The resulting block graft copolymers displayed significant thermal differences, specifically a depression in the observed melting transition temperature, Tm, in comparison with the parent PCL and PEO polymers. These amphiphilic block graft copolymers undergo self‐assembly in aqueous solution with the P(CL‐co‐OPD‐co‐(OPD‐g‐PEO)) polymer forming spherical micelles and a P(CL‐co‐OPD‐co‐(OPD‐g‐PEO)‐co‐(OPD‐gpMeOBn)) forming cylindrical or rod‐like micelles, as observed by transmission electron microscopy and atomic force microscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3553–3563, 2010  相似文献   

10.
Poly(ethylene imine)‐graft‐poly(ethylene oxide) (PEI‐g‐PEO) copolymers were synthesized via Michael addition reaction between acryl‐terminated poly(ethylene oxide) methyl ether (PEO) and poly(ethylene imine) (PEI). The brush‐like copolymers were characterized by means of Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. It is found that the crystallinity of the PEO side chains in the copolymers remained unaffected by the PEI backbone whereas the crystal structure of PEO side chains was altered to some extent by the PEI backbone. The crystallization behavior of PEO blocks in the copolymers suggests that the bush‐shaped copolymers are microphase‐separated in the molten state. The PEO side chains of the copolymers were selectively complexed with α‐cyclodextrin (α‐CD) to afford hydrophobic side chains (i.e., PEO/α‐CD inclusion complexes). The X‐ray diffraction (XRD) shows that the inclusion complexes (ICs) of the PEO side chains displayed a channel‐type crystalline structure. It is identified that the stoichiometry of the inclusion complexation of the PEI‐g‐PEO with α‐CD is close to that of the control PEO with α‐CD. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2296–2306, 2008  相似文献   

11.
A well‐defined double hydrophilic graft copolymer, with polyacrylate as backbone, hydrophilic poly(ethylene glycol) and poly(methacrylic acid) as side chains, was synthesized via successive atom transfer radical polymerization followed by the selective hydrolysis of poly(methoxymethyl methacrylate) side chains. The grafting‐through strategy was first used to prepare poly[poly(ethylene glycol) methyl ether acrylate] comb copolymer. The obtained comb copolymer was transformed into macroinitiator by reacting with lithium diisopropylamine and 2‐bromopropionyl chloride. Afterwards, grafting‐from route was employed for the synthesis of poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methoxymethyl methacrylate) amphiphilic graft copolymer. The molecular weight distribution of this amphiphilic graft copolymer was narrow. Poly(methoxymethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections. The final product, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methacrylate acid), was obtained by selective hydrolysis of poly(methoxymethyl methacrylate) side chains under mild conditions without affecting the polyacrylate backbone. This double hydrophilic graft copolymer was found be stimuli‐responsive to pH and ionic strength. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4056–4069, 2008  相似文献   

12.
Novel biodegradable amphiphilic graft copolymers containing hydrophobic poly(ester‐carbonate) backbone and hydrophilic poly(ethylene glycol) (PEG) side chains were synthesized by a combination of ring‐opening polymerization and “click” chemistry. First, the ring‐opening copolymerization of 5,5‐dibromomethyl trimethylene carbonate (DBTC) and ε‐caprolactone (CL) was performed in the presence of stannous octanoate [Sn(Oct)2] as catalyst, resulting in poly(DBTC‐co‐CL) with pendant bromo groups. Then the pendant bromo groups were completely converted into azide form, which permitted “click” reaction with alkyne‐terminated PEG by Huisgen 1,3‐dipolar cycloadditions to give amphiphilic biodegradable graft copolymers. The graft copolymers were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectra and gel permeation chromatography measurements, which confirmed the well‐defined graft architecture. These copolymers could self‐assemble into micelles in aqueous solution. The size and morphologies of the copolymer micelles were measured by transmission electron microscopy and dynamic light scattering, which are influenced by the length of PEG and grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

13.
A series of amphiphilic graft copolymers P(HFMA)‐g‐P(SPEG) comprising poly(hexafluorobutyl methacrylate) (PHFMA) backbones and poly(ethylene glycol) (PEG) side chains were synthesized by copolymerization of HFMA and SPEG macromonomer with the p‐vinylbenzyl end group. The SPEG macromonomer was synthesized by reacting Methoxy poly(ethylene glycol) (MPEG) with p‐chloromethylstyrene in THF in the presence of NaH. The macromonomer and amphiphilic graft copolymer were characterized by FTIR, 1H NMR, 19F NMR, and gel permeation chromatography (GPC). The critical micelle concentration (CMC) of the amphiphilic graft copolymer was measured by surface tension technique. The results showed that the CMC decreased with increasing HFMA contents in the graft copolymers. The interaction between P(HFMA)‐g‐P(SPEG) and bovine serum albumin (BSA) was studied by fluorescence spectroscopy, transmission electron microscopy (TEM), and photon correlation spectroscopy (PCS). The fluorescence spectrum showed that the fluorescence intensity of BSA increased with increasing content of HFMA in P(HFMA)‐g‐P(SPEG) and concentration of P(HFMA)‐g‐P(SPEG) in the P(HFMA)‐g‐P(SPEG)/BSA solution. TEM micrographs showed that P(HFMA)‐g‐P(SPEG) mainly formed core‐shell structure micelles. When BSA was added, the micelles changed from a core‐shell structure into a worm‐like, vesicle‐like and hollow‐like structure with different initial concentrations of the copolymer. The size distribution of the micelles increased proving that the copolymer micelles encapsulated the bovine serum albumin. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4895–4907, 2009  相似文献   

14.
Polymer electrolytes are of tremendous importance for applications in modern lithium‐ion (Li+‐ion) batteries due to their satisfactory ion conductivity, low toxicity, reduced flammability, as well as good mechanical and thermal stability. In this study, the Li+‐ion conductivity of well‐defined poly(ethylene oxide) (PEO) networks synthesized via copper(I)‐catalyzed azide–alkyne cycloaddition is investigated by electrochemical impedance spectroscopy after addition of different lithium salts. The ion conductivity of the network electrolytes increases with increasing molar mass of the PEO chains between the junction points which is completely opposite to the behavior of their respective uncrosslinked linear precursors. Obviously, this effect is directly related to the segmental mobility of the PEO chains. Furthermore, the ion conductivity of the network electrolytes under investigation increases also with increasing size of the anion of the added lithium salt due to a weaker anti‐plasticizing effect of the more bulky anions. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 21–28  相似文献   

15.
Ethyl cellulose graft poly(poly(ethylene glycol) methyl ether methacrylate) (EC‐g‐P(PEGMA)) amphiphilic copolymers were synthesized via atom transfer radical polymerization (ATRP) and characterized by FTIR, 1H NMR, and gel permeation chromatography. Reaction kinetics analysis indicated that the graft copolymerization is living and controllable. The self‐assembly and thermosensitive property of the obtained EC‐g‐P(PEGMA) amphiphilic copolymers in water were investigated by dynamic light scattering, transmission electron microscopy, and transmittance. It was found that the EC‐g‐P(PEGMA) amphiphilic copolymers can self‐assemble into spherical micelles in water. The size of the micelles increases with the increase of the side chain length. The spherical micelles show thermosensitive properties with a lower critical solution temperature around 65 °C, which almost independent on the graft density and the length of the side chains. The obtained EC‐g‐P(PEGMA) graft copolymers have both the unique properties of poly(ethylene glycol) and cellulose, which may have the potential applications in biomedicine and biotechnology. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 46: 6907–6915, 2008  相似文献   

16.
Butyl rubber‐poly(ethylene oxide) (PEO) graft copolymers with high PEO content (40–83 wt %) were synthesized by the functionalization and activation of the double bond moiety of butyl rubber containing high (7 mol %) isoprene content and subsequent reaction with PEO of different molecular weights from 750 to 5000 g/mol. The properties of these copolymers, along with other butyl rubber‐PEO graft copolymers were studied in films and in aqueous solution. Despite the high PEO content, films of the copolymers were quite stable in water with respect to mass loss and were capable of releasing an encapsulated probe molecule in a manner that was dependent on the PEO content. At high PEO content they were resistant to the adhesion and growth of C2C12 cells. Despite the resistance of films to dissolution, it was possible to prepare nanosized aqueous assemblies via a THF‐water exchange process and the sizes of the assemblies were tuned by their method of preparation. The assemblies were also able to encapsulate a probe molecule and were found to be nontoxic in vitro. Combined, this set of properties makes these new amphiphilic copolymers promising for a wide range of potential applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3383–3394  相似文献   

17.
Rod–coil amphiphilic diblock copolymers, consisting of oligo(p‐phenylenevinylene) (OPV) as a rod and hydrophobic block and poly(ethylene oxide) (PEO) as a coil and hydrophilic block, were synthesized by a convergent method. The aggregation behavior of the block copolymers in a selective solvent (tetrahydrofuran/H2O) was probed with the absorption and emission of the OPV block. With increasing H2O concentration, the absorption maximum was blueshifted, the emission from the molecularly dissolved OPV decreased, and that from the aggregated OPV increased. This indicated that the OPV blocks formed H‐type aggregates in which the OPV blocks aligned in a parallel orientation with one another. The transmission electron microscopy observation revealed that the block copolymers with PEO weight fractions of 41 and 62 wt % formed cylindrical aggregates with a diameter of 6–8 nm and a length of several hundreds nanometers, whereas the block copolymer with 79 wt % PEO formed distorted spherical aggregates with an average diameter of 13 nm. Furthermore, the solubilization of an OPV homooligomer with the block copolymer was studied. When the total polymer concentration was less than 0.1 wt %, the block copolymer solubilized OPV with a 50 mol % concentration. The structure of the aggregates was a cylinder with a relatively large diameter distribution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1569–1578, 2005  相似文献   

18.
A new stratagem for the synthesis of amphiphilic graft copolymers of hydrophilic poly(ethylene oxide) as the main chain and hydrophobic polystyrene as the side chains is suggested. A poly(ethylene oxide) with pending 2,2,6,6‐tetramethylpiperidine‐1‐oxyls [poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide)] was first prepared by the anionic ring‐opening copolymerization of ethylene oxide and 4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl, and then the graft copolymerization of styrene was completed with benzoyl peroxide as the initiator in the presence of poly(4‐glycidyloxy‐2,2,6,6‐tetramethylpiperidine‐1‐oxyl‐co‐ethylene oxide). The polymerization of styrene was under control, and comblike, amphiphilic poly(ethylene oxide)‐g‐polystyrene was obtained. The copolymer and its intermediates were characterized with size exclusion chromatography, 1H NMR, and electron spin resonance in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3836–3842, 2006  相似文献   

19.
A new kind of dendronized polymer brush with metallo‐supramolecular polymer side chains was fabricated by a combination of macromonomer and graft‐to approach. The alternating copolymers of maleic anhydride and styryl macromonomers pendant with Fréchet‐type dendrons of three generations were reported previously. In this article, terpyridine groups were introduced along the backbone of the dendronized polymers through the amidolysis of anhydride groups. The terpyridine functionalized PEO linear chains were then incorporated through the complexation of terpyridine and Ru(II) ion. Thus, dendronized polymer brushes with amphiphilic properties were synthesized. AFM analysis showed worm‐like single molecular morphologies of the polymers of three generations, and 1H NMR analysis indicated that such molecular brushes had an amphiphilic nature in solution. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3303–3310, 2007  相似文献   

20.
A series of novel side‐chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine‐terminated diblock copolymer poly(ethylene oxide)‐block‐polystyrene (PEO‐PS‐Br) was prepared by the ATRP of styrene initiated with the macro‐initiator PEO‐Br, which was obtained from the esterification of PEO and 2‐bromo‐2‐methylpropionyl bromide. An azobenzene‐containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side‐chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)‐block‐polystyrene‐block‐poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] (PEO‐PS‐PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442–4450, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号