首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase behavior of thin‐film blends of polystyrene (PS) and the random copolymer poly(styrene‐co‐4‐bromostyrene) (PBS) was studied with atomic force microscopy (AFM) and small‐angle X‐ray scattering (SAXS). Phase behavior was studied as a function of the PBS and PS degree of polymerization (N), degree of miscibility [controlled via the volume fraction of bromine in the copolymer (f)], and annealing conditions. The Flory–Huggins interaction parameter χ was measured directly from SAXS as a function of temperature and scaled with f as χ = f2χS–BrS [where χS–BrS represents the segmental interaction between PS and the homopolymer poly(4‐bromostyrene)] Simulations based on the Flory–Huggins theory and χ measured from SAXS were used to predict phase diagrams for all the systems studied. The PBS/PS system exhibited upper critical solution temperature behavior. The AFM studies showed that increasing f in PBS led to progressively different morphologies, from flat topography (i.e., one phase) to interconnected structures or islands. In the two‐phase region, the morphology was a strong function of N (due to changes in mobility). A comparison of the estimated PBS volume fractions from the AFM images with the PBS bulk volume fraction in the blend suggested the encapsulation of PBS in PS, supporting the work of previous researchers. Excellent agreement between the phase diagram predictions (based on χ measured by SAXS) and the AFM images was observed. These studies were also consistent with interdiffusion measurements of PBS/PS interfaces (with Rutherford backscattering spectroscopy), which indicated that the interdiffusion coefficient decreased with increasing χ in the one‐phase region and dropped to zero deep inside the two‐phase region. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 255–271, 2002  相似文献   

2.
The phase behavior of statistical copolymers composed of (4‐tert‐butylstyrene) (B) and (4‐tert‐butoxystyrene) (O), abbreviated as s‐BO, with polyisoprene (I) was investigated by optical microscopic (OM) observation and small‐angle neutron scattering (SANS) measurements. It has been known that B/I blend shows lower critical solution temperature (LCST) type phase diagram, while O/I blend has upper critical solution temperature (UCST) type one. Several blends of s‐BOs having mol fraction of B, mB, comparable to 0.50, with I showed both UCST and LCST type phase diagram. Furthermore, UCST type phase behavior was observed for blends having small mB, while LCST type one was for that of large mB at all used temperatures. Hence, the phase behavior of s‐BO/I blend can be understood as a result of the competition of two interactions having opposite temperature dependence. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2272–2280, 2009  相似文献   

3.
To enhance the heat resistance of poly(styrene‐co‐acrylonitrile‐co‐butadiene), ABS, miscibility of poly(styrene‐co‐acrylonitrile), SAN, with poly(styrene‐con‐phenyl maleimide), SNPMI, having a higher glass transition temperature than SAN was explored. SAN/SNPMI blends casted from solvent were immiscible regardless of copolymer compositions. However, SNPMI copolymer forms homogeneous mixtures with SAN copolymer within specific ranges of copolymer composition upon heating caused by upper critical solution temperature, UCST, type phase behavior. Since immiscibility of solvent casting samples can be driven by solvent effects even though SAN/SNPMI blends are miscible, UCST‐type phase behavior was confirmed by exploring phase reversibility. When copolymer composition of SNPMI was fixed, the phase homogenization temperature of SAN/SNPMI blends was increased as AN content in SAN copolymer increased. To understand the observed phase behavior of SAN/SNPMI blend, interaction energies of blends were calculated from the UCST‐type phase boundaries by using the lattice‐fluid theory combined with a binary interaction model. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1131–1139, 2008  相似文献   

4.
Phase behavior of blends of poly(vinyl methyl ether) (PVME) with four styrene-butadiene-styrene (SBS) triblock copolymers, being of various molecular weights, architecture, and compositions, was investigated by small-angle light scattering. Small-angle X-ray scattering investigation was accomplished for one blend. Low critical solution temperature (LCST) and a unique phase behavior, resembling upper critical solution temperature (UCST), were observed. It was found that the architecture of the copolymer greatly influenced the phase behavior of the blends. Random phase approximation theory was used to calculate the spinodal phase transition curves of the ABA/C and BAB/C systems; LCST and resembling UCST phase behavior were observed as the parameters of the system changed. Qualitatively, the experimental and the theoretical results are consistent with each other. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
We prepared various copolymers containing styrene and methacrylates to examine their miscibility with polycarbonates such as bisphenol A polycarbonate (PC), dimethylpolycarbonate (DMPC), and tetramethylpolycarbonate (TMPC). Among the various copolymers examined, poly(methyl methacrylate‐co‐cyclohexylmethacrylate) [P(MMA–CHMA)] copolymers containing proper amounts of cyclohexylmethacrylate (CHMA) formed miscible blends with PC and DMPC, whereas TMPC did not form a miscible blend with P(MMA–CHMA). However, TMPC was miscible with poly(styrene‐co‐cyclohexylmethacrylate) [P(S–CHMA)] copolymers containing less than about 40 wt % CHMA, whereas PC and DMPC were always immiscible with P(S–CHMA). Miscible blends exhibited lower critical solution temperature (LCST)‐type phase behavior. Binary interaction energies were calculated from the observed phase boundaries with lattice–fluid theory combined with a binary interaction model. The quantitative interaction energy of each binary pair indicated that the phenyl ring substitution of polycarbonate with methyl groups did not lead to interactions that were favorable for miscibility with methyl methacrylate (MMA) and CHMA, but it did lead to favorable interactions with styrene. The addition of CHMA to MMA initially increased the LCST but ultimately led to immiscibility with PC and DMPC; however, addition of CHMA to styrene always decreased the LCST with TMPC. The increased LCST of PC or DMPC blends stemmed from intramolecular repulsion between MMA and CHMA, whereas the decreased LCST of TMPC/P(S–CHMA) blends with CHMA content came from negative interaction energy between styrene and CHMA. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1948–1955, 2001  相似文献   

6.
The effect of phase‐separated morphology on the rheological properties of polystyrene/poly(vinyl methyl ether) (PS/PVME) blend was investigated by optical microscopy (OM), light scattering (LS) method, and rheology. The blend had a lower critical solution temperature (LCST) of 112°C obtained by turbidity experiment using LS at a heating rate of 1°C/h. Three different blend compositions (critical 30/70 PS/PVME by weight) and two off‐critical (50/50 and 10/90)) were prepared. The rheological properties of each composition were monitored with phase‐separation time after a temperature jump from a homogeneous state to the preset phase‐separation temperature. For the 30/70 and 50/50 blends, it was found that with phase‐separation time, the storage and loss moduli (G′ and G″) increased at shorter times due to the formation of co‐continuous structures resulting from spinodal decomposition. Under small oscillatory shearing, shear moduli gradually decreased with time at longer phase‐separation times due to the alignment of co‐continuous structures toward the flow direction, as verified by scanning electron microscopy. However, for the 10/90 PS/PVME blend, the rheological properties did not change with phase‐separation times. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 889–906, 1999  相似文献   

7.
The multi‐thermo‐responsive block copolymer of poly[2‐(2‐methoxyethoxy)ethyl methacrylate]‐block‐poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PMEO2MA‐b‐PVEA) displaying phase transition at both the lower critical solution temperature (LCST) and the upper critical solution temperature (UCST) in the alcohol/water mixture is synthesized by reversible addition‐fragmentation chain transfer polymerization. The poly[2‐(2‐methoxyethoxy)ethyl methacrylate] (PMEO2MA) block exhibits the UCST phase transition in alcohol and the LCST phase transition in water, while the poly[N‐(4‐vinylbenzyl)‐N,N‐diethylamine] (PVEA) block shows the UCST phase transition in isopropanol and the LCST phase transition in the alcohol/water mixture. Both the polymer molecular weight and the co‐solvent/nonsolvent exert great influence on the LCST or UCST of the block copolymer. By adjusting the solvent character including the water content and the temperature, the block copolymer undergoes multiphase transition at LCST or UCST, and various block copolymer morphologies including inverted micelles, core‐corona micelles, and corona‐collapsed micelles are prepared. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4399–4412  相似文献   

8.
We describe the initial studies of the complex aqueous phase behavior of poly(trimethylene ether) glycol (PO3G), a renewably sourced polyether glycol. Cloud point measurement revealed that a low molecular weight PO3G exhibits both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in water in the temperature range between 30°C and 80°C. At low concentrations of PO3G, the polymer solutions exhibit LCST‐type phase behavior. In the intermediate concentration ranges, PO3G and water are immiscible. However, at higher concentrations of PO3G, the solutions show UCST‐type phase behavior. In addition, both the LCSTs and UCSTs can be easily tuned over a wide range by varying the amount of alcohol co‐solvents. These findings have potential applications in the design of personal care applications and in the development of thermosensitive “smart” materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
Chain configuration influences phase behavior of blends of poly(methyl methacrylate) (PMMA) of different tactic configurations (syndiotacticity, isotacticity, or atacticity) with poly(L ‐lactic acid) (PLLA). Blends system of sPMMA/PLLA is immiscible with an asymmetry‐shaped UCST at ~250 °C. The phase behavior of the sPMMA/PLLA blend is similar to the aPMMA/PLLA blend that has been already proven in the previous work to exhibit similar UCST temperatures (230–250 °C) and asymmetry shapes in the UCST diagrams. On the other hand, the iPMMA/PLLA blend remains immiscible up to thermal degradation without showing any transition to UCST upon heating. The blend system with UCST, that is, sPMMA/PLLA, can be frozen in a state of miscibility by quenching to rapidly solidify from the homogeneous liquid at UCST, where the Tg‐composition relationship for the sPMMA/PLLA blend fits well with the Gordon‐Taylor Tg model with k = 0.15 and the blend's T leads to χ12 = ?0.26 for the UCST‐quenched sPMMA/PLLA blend. Both parameters (k and χ) as characterized for the frozen miscible blend suggest a relatively weak interaction between the two constituents (sPMMA and PLLA) in the blends. The interaction strength is likely not strong enough to maintain a thermodynamic miscibility when the blend is at ambient temperature or any lower temperatures below UCST. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2355–2369, 2008  相似文献   

10.
研究了同时具有最高临界互溶温度和最低临界互溶温度的羧化聚苯醚/聚苯乙烯共混体系随退火温度的变化而发生的相形态结构的变化.研究了此共混体系的相分离机理.并发现了此特殊共混体系低温和高温区的相分离机理是不同的.从分子的结构和分子间特殊相互作用上探讨了此共混体系产生特殊相行为的原因.  相似文献   

11.
 Upper-critical-solution-temperature (UCST) behavior in a ternary blend of poly(2,6-dimethyl-1,4-phenylene oxide), poly(4-methyl styrene), and polystyrene is reported. The as-cast ternary blend is immiscible at ambient conditions and comprises two different phases, and, however, turns into a miscible system above the “clarity point” ranging from 160 to 300 °C for different ternary compositions. The maximum clarity point is labeled as the UCST for the ternary system, which is about 295 °C. Above the clarity point, the originally immiscible ternary blend turned into one miscible phase. Owing to the thermodynamic UCST behavior and kinetic hindrance, the immiscible ternary polymer blend can be locked into a pseudo-miscible state if it is heated to a temperature above the clarity point followed by a rapid-cooling processing scheme. The quenched ternary blend can remain in a pseudo-miscible state as long as the service temperature does not exceed the glass-transition temperature of the blend. Received: 17 July 2001 Accepted: 3 October 2001  相似文献   

12.
Blends of poly(4-methylstyrene) (P4MS) with polystyrene (iPS) exhibit an upper critical solution temperature (UCST) at ca. 270 °C. The overall phase behavior and trend of variation in the phase diagrams for the iPS/P4MS blend system with respect to molecular weights of iPS is similar to an earlier studied blend system of atactic PS with P4MS. This suggests that the crystal phase-related tacticity and crystallinity in iPS does not influence the amorphous phase behavior and UCST behavior of the polymer mixtures. A model based on a modified Flory-Huggins expression for binary interactions was constructed to describe the UCST-type behavior of the iPS/P4MS blend and to compare the qualitative effects of molecular weights on iPS/P4MS blend vs. atactic PS/P4MS systems.  相似文献   

13.
The liquid–liquid phase‐separation (LLPS) behavior of poly(n‐methyl methacrylimide)/poly(vinylidene fluoride) (PMMI/PVDF) blend was studied by using small‐angle laser light scattering (SALLS) and phase contrast microscopy (PCM). The cloud point (Tc) of PMMI/PVDF blend was obtained using SALLS at the heating rate of 1 °C min?1 and it was found that PMMI/PVDF exhibited a low critical solution temperature (LCST) behavior similar to that of PMMA/PVDF. Moreover, Tc of PMMI/PVDF is higher than its melting temperature (Tm) and a large temperature gap between Tc and Tm exists. At the early phase‐separation stage, the apparent diffusion coefficient (Dapp) and the product (2Mk) of the molecules mobility coefficient (M) and the energy gradient coefficient (k) arising from contributions of composition gradient to the energy for PMMI/PVDF (50/50 wt) blend were calculated on the basis of linearized Cahn‐Hilliard‐Cook theory. The kinetic results showed that LLPS of PMMI/PVDF blends followed the spinodal decomposition (SD) mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1923–1931, 2008  相似文献   

14.
Various phase behavior of blends of poly(vinyl ether)s with homologous acrylic polymers (polymethacrylates or polyacrylates) were examined using differential scanning calorimetry, optical microscopy (OM), and Fourier‐transformed infrared spectroscopy. Effects of varying the pendant groups of either of constituent polymers on the phase behavior of the blends were analyzed. A series of interestingly different phase behavior in the blends has been revealed in that as the pendant group in the acrylic polymer series gets longer, polymethacrylate/poly(vinyl methyl ether) (PVME) blends exhibit immiscibility, upper critical solution temperature (UCST), and miscibility, respectively. This study found that the true phase behavior of poly(propyl methacrylate)/PVME [and poly(isopropyl methacrylate)/PVME)] blend systems, though immiscible at ambient, actually displayed a rare UCST upon heating to higher temperatures. Similarly, as the methyl pendant group in PVE is lengthened to ethyl (i.e., PVME replaced by PVEE), phase behavior of its blends with series of polymethacrylates or polyacrylates changes correspondingly. Analyses and quantitative comparisons on four series of blends of PVE/acrylic polymer were performed to thoroughly understand the effects of pendant groups in either polyethers (PVE's) or acrylic polymers on the phase behavior of the blends of these two constituents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1521–1534, 2007  相似文献   

15.
Using differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and Fourier transformed infrared spectroscopy (FTIR), upper critical solution temperature (UCST) phase behavior with immiscibility–miscibility transformation in blends of poly(ethylene succinate) (PESu) with poly(lactic acid)s (PLAs), such as poly(D ,L ‐lactic acid) (PDLLA), poly(L ‐lactic acid) (PLLA), poly(D ‐lactic acid) (PDLA), differing in D/L configurations and molecular weights were investigated. All three binary blends of PDLLA/PESu, PLLA/PESu, and PESu/PDLA exhibit UCST behavior, which means they are immiscible at ambient temperature but can become miscible upon heating to higher temperatures at 240–268 °C depending on molecular weights. The PLLAs/PESu blends at UCST could be reverted back to the original phase‐separated morphology, as proven by solvent redissolution. The blends upon quenching from above UCST could be frozen into a quasi‐miscible state, where the Flory‐Huggins interaction parameter (χ12) was determined to be a negative value (by melting point depression technique). The interaction between PDLLA and PESu in blend resulted in significant reduction in spherulite growth rate of PESu. Furthermore, blends of PESu with lower molecular weight PLLA or PDLA (Mw of PLLA and PDLA are 152,000 and 124,000 g/mol, respectively), instead of the higher Mw of PDLLA (Mw of PDLLA = 157,000 g/mol), are immiscible with UCST phase behavior, which are affected by molecular weights rather than the ratio of L/D monomer in the chemical structure of PLAs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1135–1147, 2010  相似文献   

16.
The effect of liquid–liquid phase separation (LLPS) on the crystallization behavior of poly(ethylene‐ran‐vinyl acetate) with a vinyl acetate content of 9.5 wt % (EVA‐H) in the critical composition of a 35/65 (wt/wt) EVA‐H/paraffin wax blend was investigated by small‐angle light and X‐ray scattering methods and rheometry. This blend exhibited an upper critical solution temperature (UCST) of 98°C, and an LLPS was observed between the UCST and the melting point of 88°C for the EVA‐H in the blend. As the duration time in the LLPS region increased before crystallization at 65°C, both the spherulite size and the crystallization rate of the EVA‐H increased, but the degree of the lamellar ordering in the spherulite and the degree of crystallinity of the EVA‐H in the blend decreased. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 707–715, 2000  相似文献   

17.
The miscibility of polysulfone (PSf) with various hydrophilic copolymers was explored. Among these blends, PSf gave homogeneous mixtures with poly(1‐vinylpyrrolidone‐co‐styrene) [P(VP–S)] copolymers when these copolymers contained 68–88 wt % 1‐vinylpyrrolidone (VP). Miscible PSf blends with P(VP–S) copolymers underwent phase separation on heating caused by lower critical solution temperature (LCST)‐type phase behavior. The phase behavior depended on the copolymer composition. Changes in the VP content of P(VP–S) copolymers from 65 to 68 wt % shifted the phase behavior from immiscibility to miscibility and the LCST behavior. The phase‐separation temperatures of the miscible blends first increased gradually with the VP content, then went through a broad maximum centered at about 80 wt % VP, and finally decreased just before the limiting content of VP for miscibility with PSf. The interaction energies of binary pairs involved in PSf/P(VP–S) blends were evaluated from the phase‐separation temperatures of PSf/P(VP–S) blends with lattice‐fluid theory combined with a binary interaction model. The decrease in the contact angle between water and the membrane surface with increasing VP content in P(VP–S) copolymers indicated that the hydrophobic properties of PSf could be improved via blending with hydrophilic P(VP–S) copolymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1401–1411, 2003  相似文献   

18.
The compatibility behavior of polyetherether ketone (PEEK) with poly(ether sulfone) (PES) has been reexamined using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and extrudate swell measurements. The blends were prepared by both melt‐blending and solution‐blending techniques. The phase behavior of blends is strongly affected by the blending technique used. Blends prepared by solution‐blending are compatible in the entire composition range on the basis of the single composition‐dependent glass transitions and exhibit lower critical solution temperature (LCST) behavior. LCST was near 340 °C around which the crystalline melting point of PEEK exists. Near LCST melting‐induced movement of molecular chains disturbs the initial homogeneous state of the solution blends and leads to a phase‐separated state that is thermodynamically more stable in the absence of strong specific interactions between the homopolymers. Contrary to the solution‐blended samples, melt‐blended samples were in the phase‐separated state even at a lower processing temperature of 300 °C. Two glass transitions corresponding to a PEEK‐rich and a PES‐rich phase were found for all compositions. From the measured glass transition of phase‐separated blends, weight fractions of PES and PEEK dissolved in each phase were determined using the Fox equation. Compatibility is greater in the PEEK‐rich compositions than in the PES‐rich compositions. PEEK dissolves more in PES‐rich phases than does PES in the PEEK‐rich phase. Variation of the specific heat increment (ΔCp) at the glass transition with composition also supports these inferences. Solution‐blended samples, quenched from 380 °C, also indicated similar behavior but were slightly more compatible. The aforementioned results are consistent with those inferred from SEM studies and extrudate swell measurements that show a greater compatibility in PEEK‐rich compositions than in PES‐rich compositions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1407–1424, 2002  相似文献   

19.
In this work, ultrafast differential scanning calorimetry (UFDSC) is used to study the dynamics of phase separation. Taking poly(vinyl methyl ether)/polystyrene (PVME/PS) blend as the example, we firstly obtained the phase diagram that has lower critical solution temperature (LCST), together with the glass transition temperature (Tg) of the homogeneous blend with different composition. Then, the dynamics of the phase separation of the PVME/PS blend with a mass ratio of 7:3 was studied in the time range from milliseconds to hours, by the virtue of small time and spatial resolution that UFDSC offers. The time dependence of the glass transition temperature (Tg) of PVME‐rich phase, shows a distinct change when the annealing temperature (Ta) changes from below to above 385 K. This corresponds to the transition from the nucleation and growth (NG) mechanism to the spinodal decomposition (SD) mechanism, as was verified by morphological and rheometric investigations. For the SD mechanism, the temperature‐dependent composition evolution in PVME‐rich domain was found to follow the Williams–Landel–Ferry (WLF) laws. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1357–1364  相似文献   

20.
We have developed a new Flory‐Huggins model by adding a specific interaction parameter derived from a modified double‐lattice model for the Helmholtz energy of mixing for binary liquid mixtures. This model is very simple and could be easily integrated into engineering applications. Using this revised model, we can successfully describe the phase behavior of polymer solutions with an upper critical solution temperature (UCST), a lower critical solution temperature (LCST), both UCST and LCST, and a closed miscibility loop. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 162–167, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号