首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigated the effects of solvent type (mono‐ester vs. di‐ester solvent) and aging on the structural development in the poly(vinyl chloride)/butyl benzoate (PVC/BB) and PVC/dibutyl phthalate(DBP) gels, as well as on their viscoelastic and mechanical behaviors. It was found that aged PVC/DBP gels held at RT for 7 days exhibit an improvement of about 100% in storage modulus (G′) compared to fresh gels, with a sudden drop in G′ around 50 °C, whereas the storage moduli of the PVC/BB gels decrease monotonically with temperature, irrespective of the postaging time. These different behaviors of the PVC/BB and PVC/DBP gels arise mainly because of the difference in the network structure produced by the formation of the polymer‐solvent complex between the C?O groups of the solvent and the polarized hydrogen moieties of PVC, as was confirmed with small angle X‐ray scattering and uniaxial tensile experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 263–271, 2008  相似文献   

2.
Four different plasticizers were applied to make different poly(vinyl chloride) (PVC) gels, poly(vinyl chloride)‐bis(2‐ethylhexyl)phthalate (PVC‐DOP), poly(vinyl chloride)‐di‐n‐butylphthalate, poly(vinyl chloride)‐bis(2‐ethylhexyl)adipate, and poly(vinyl chloride)‐tris(2‐ethylhexyl)trimellitate. In our previous work, we reported that PVC‐DOP gel exhibits novel and reversible deformations of creeping and jointlike bending induced by direct current electric fields. In this article, we scrutinize the effects of plasticizers on electromechanical actuations, that is, reversible creeping and bending actuation with four of the different aforementioned gels. We measured the relative creeping distance, creeping area, creeping velocity, current observed, and bending angle as a function of applied electric fields for different PVC gels and found significant differences among them. To explain these variations, we compared the utility of plasticizers on the basis of the properties of different PVC gels, such as plasticizer‐retention ability, bending modulus, elongation at break, and the dielectric constant. The mentioned properties of the PVC gels played vital roles on their electromechanical actuations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2119–2127, 2003  相似文献   

3.
4.
We employed high‐resolution 13C cross‐polarization/magic‐angle‐spinning/dipolar‐decoupling NMR spectroscopy to investigate the miscibility and phase behavior of poly(vinyl chloride) (PVC)/poly(methyl methacrylate) (PMMA) blends. The spin–lattice relaxation times of protons in both the laboratory and rotating frames [T1(H) and T(H), respectively] were indirectly measured through 13C resonances. The T1(H) results indicate that the blends are homogeneous, at least on a scale of 200–300 Å, confirming the miscibility of the system from a differential scanning calorimetry study in terms of the replacement of the glass‐transition‐temperature feature. The single decay and composition‐dependent T(H) values for each blend further demonstrate that the spin diffusion among all protons in the blends averages out the whole relaxation process; therefore, the blends are homogeneous on a scale of 18–20 Å. The microcrystallinity of PVC disappears upon blending with PMMA, indicating intimate mixing of the two polymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2390–2396, 2001  相似文献   

5.
Radiation effects on the formation of conjugated double bonds in the thermal degradation of poly(vinyl chloride) (PVC) and poly(vinyl alcohol) (PVA) were investigated. Thin films of PVC and PVA were either irradiated with γ-rays at ambient temperature (pre-irradiation) and then subjected to thermal treatment, or irradiated at elevated temperatures (in situ irradiation). An extensive enhancement of the thermal degradation was observed for the pre-irradiation of the PVC films, which was more effective than the effect of the in situ irradiation at the same absorption dose. For the PVA degradation, however, the effect of the in situ irradiation was larger than that of the pre-irradiation. The results were explained and related mechanisms were discussed based on radiation-induced chemical reactions and their individual contributions to the thermal degradation behaviors of the two polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3089–3095, 1998  相似文献   

6.
The transport properties of a set of four copolymers based on poly(vinyl chloride) (PVC) have been studied. The nucleophilic substitution of chlorine atoms with 4‐mercaptophenol sodium salt, 2‐thionaphthalene, 4‐(1‐adamantyl) thiophenol, and thiophenolate sodium salt as the nucleophiles has been performed, from low conversion levels (3%) to high levels (40%), and the permeability, solubility, and diffusivity of oxygen, nitrogen, carbon dioxide, and methane have been measured. The introduction of bulky groups to the PVC chain leads to chain separation and results in large increases in the free volume at conversions up to 10%. This brings about a 5‐fold increase in the diffusion coefficients that is almost independent of the bulkiness of the substituent. Solubility is little affected and instead tends to decrease as substitution progresses. The substitution of more than 10% of the chlorine atoms does not result in an improvement in the transport properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 964–971, 2002  相似文献   

7.
Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two‐step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an isocyanate‐functionalized terpyridine binding unit. The resulting functionalized material contained metal‐ion binding sites, which could be used for grafting and crosslinking reactions. A grafting experiment was performed with a small organic terpyridine ligand. The complexation of the modified PVC with several transition‐metal ions was studied with ultraviolet–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2964–2973, 2003  相似文献   

8.
The structural evolution during uniaxial stretching of poly(vinyl chloride) films was studied using our real time spectral birefringence stretching machine. The effect of clay loading and the amount of plasticizer as well as the rate effects on the birefringence development and true mechanical response are presented with a final model summarizing the molecular phenomena during stretching. Mechano‐optical studies revealed that birefringence correlated with mechanical response (stress, strain, work) nonlinearly. This was primarily attributed to the preexisting strong network of largely amorphous chains connected via small crystallites that act as physical crosslinking points. These crystallites are not easily destroyed during the high‐speed stretching process as evidenced from the birefringence–true strain curves along with the X‐ray crystallinity measurements. At high speeds, the amorphous chains do not have enough time to relax and hence attain higher orientation levels. The crystallites, however, orient more efficiently when stretched at slow speeds. Apparently, some relaxation of the surrounding amorphous chains helps rotate the crystallites in the stretching direction. Overall birefringence is higher at high stretching speeds for a given true strain value. When the nanoparticles are incorporated, the orientation levels are increased significantly for both the crystalline and amorphous phases. Nanoplatelets increase the continuity of the network because they have strong interaction with the amorphous chains and/or crystallites. This in turn helps transfer the local stresses to the attached chains and increase the orientation levels of the chains. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 724–742, 2005  相似文献   

9.
This work reports the formation and detailed characterization of the γ-cyclodextrin (γ-CD) inclusion compounds (ICs) formed with two poly (vinyl chloride) samples with different isotactic content. The ICs were characterized by X-ray diffraction, solid state 13C-NMR, solution 1H-NMR, FT-infrared, differential scanning calorimetry, and thermogravimetric analysis. Experimental evidence of the inclusion of the guest polymer chains into the narrow channels created by the γ-CD crystalline host lattice has been obtained. Examination of coalesced poly (vinyl chlorides) (PVCs) obtained after the host γ-CD is removed reveals different characteristics specifically for the coalesced PVC sample with higher isotactic content. An increase in Tg was observed by DSC for this PVC. To the contrary, the Tg of the coalesced PVC sample with lower isotactic content is almost the same as that of the as-synthesized sample. Thermogravimetric analysis indicated that coalesced PVC with higher isotactic content acquires a degree of stabilization after modification by threading into and being extracted from its γ-CD IC. The results suggest that an irreversible conformational change takes place when PVC forms ICs with a solid host lattice like γ-CD. The PVC molecules extend and reorganize into a more stable conformation in the IC, consequently improving the properties of the coalesced sample. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2503–2513, 2007  相似文献   

10.
Small‐angle X‐ray scattering (SAXS) was used to obtain solution parameters of a weak polyelectrolyte in water in the absence of any additives, such as neutralizing agents or salt. Poly(acrylic acid) (PAA) was used as a weak polyelectrolyte from which SAXS data were obtained in the dilute region of 1–10 mg cm?3. An intrinsic viscosity of 15.7 dL g?1 was obtained from a plot of reciprocal reduced viscosities versus the concentration. The application of the SAXS data, that is, the contour length (L = 1.97 × 104 Å), the persistence length (a* = 58.5 Å), and the molecular weight (M = 5.9 × 105 Da), to the Yamakawa–Fujii equation suggested that PAA in water at 25 °C could be described as a wormlike chain having a cylindrical body of d = 6 Å. An end‐to‐end distance (r = 1.6 × 103 Å) was calculated from r = 2a*L ? 2(a*)2. The nonisotropic expansion factor (α = 2.9) was calculated for PAA expanding from the random coil in dioxane at 30 °C (Θ temperature) to the wormlike chain in water at 25 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1263–1272, 2003  相似文献   

11.
The nucleophilic substitution reaction of poly(vinyl chloride) (PVC) with potassium 4‐acetamidothiophenolate was performed in a cyclohexanone solution. The quantitative microstructural analysis, as a function of the conversion, was followed by 13C NMR spectroscopy. Through a comparison of the microstructural changes with the degree of substitution, a small fraction of mmr tetrads was found to react occasionally with the central chlorine of the mr triad instead of the mm, such as for sodium benzenethiolate (NaBT). This conclusion was confirmed by Fourier transform infrared results. However, unlike NaBT, the evolution of the glass‐transition temperature (Tg) with the degree of conversion changed with the degree of substitution similarly to the ratio of the extents to which mmr and rrmr structures intervened in the substitution reaction. From these studies, it followed that the specific interactions due to the polar nature of the nucleophile enhanced the molecular‐microstructure‐based mechanisms, which were responsible for Tg. Such a novel quantitative correlation, compared with more tentative ones obtained previously, presents valuable insight into the role of the stereochemical microstructure in the glass‐transition process in PVC. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1857–1867, 2004  相似文献   

12.
The intermolecular interactions between poly(vinyl chloride) (PVC) and poly(vinyl acetate) (PVAc) in tetrahydrofuran (THF), methyl ethyl ketone (MEK) and N,N-dimethylformamide (DMF) were thoroughly investigated by the viscosity measurement. It has been found that the solvent selected has a great influence upon the polymer-polymer interactions in solution. If using PVAc and THF, or PVAc and DMF to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+THF) or (PVAc+DMF) is less than in corresponding pure solvent of THF or DMF. On the contrary, if using PVAc and MEK to form polymer solvent, the intrinsic viscosity of PVC in polymer solvent of (PVAc+MEK) is larger than in pure solvent of MEK. The influence of solvent upon the polymer-polymer interactions also comes from the interaction parameter term Δb, developed from modified Krigbaum and Wall theory. If PVC/PVAc blends with the weight ratio of 1/1 was dissolved in THF or DMF, Δb<0. On the contrary, if PVC/PVAc blends with the same weight ratio was dissolved in MEK, Δb>0. These experimental results show that the compatibility of PVC/PVAc blends is greatly associated with the solvent from which polymer mixtures were cast. The agreement of these results with differential scanning calorimetry measurements of PVC/PVAc blends casting from different solvents is good.  相似文献   

13.
Toughening‐modified poly(vinyl chloride) (PVC)/organophilic montmorillonite (OMMT) composites with an impact‐modifier resin (Blendex 338) were prepared by melt intercalation, and their microstructures were investigated with wide‐angle X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. The mechanical properties of the PVC composites were examined in terms of the content of Blendex and OMMT, and the fracture toughness was analyzed with a modified essential work of fracture model. Intercalated structures were found in the PVC/OMMT composites with or without Blendex. Either Blendex or OMMT could improve the elongation at break and notched impact strength of PVC at proper contents. With the addition of 30 phr or more of Blendex, supertough behavior was observed for PVC/Blendex blends, and their notched impact strength was increased more than 3319% compared with that of pristine PVC. Furthermore, the addition of OMMT greatly improved both the toughness and strength of PVC/Blendex blends, and the toughening effect of OMMT on PVC/Blendex blends was much larger than that on pristine PVC. Blendex and OMMT synergistically improved the mechanical properties of PVC. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 286–295, 2004  相似文献   

14.
We evaluated the effects of the solvent composition with respect to the solution concentration, applied electric field, and tip‐to‐collector distance on the morphology of electrospun poly(vinyl chloride) (PVC) fibers. The solvent volume ratio was strongly correlated with the diameter of the electrospun fibers with respect to the other processing parameters. Electrospun PVC fibers dissolved in tetrahydrofuran (THF) had diameters ranging from 500 nm to 6 μm; those dissolved in N,N‐dimethylformamide (DMF) had an average diameter of 200 nm. The diameters of the electrospun fibers were obtained from narrow to broad distributions with the solvent composition. Also, the diameters of fibers electrospun from a mixed solvent of THF and DMF were less than 1 μm. The mechanical properties of electrospun PVC nonwoven mats depended on the fiber orientation and linear velocity of the drum surface. With increasing linear velocity of the drum surface, electrospun PVC fibers were arranged toward the machine direction, and the dimensions of the spiral path were shorter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2259–2268, 2002  相似文献   

15.
Rice straw was employed for the preparation of lignocellulosic‐poly(vinyl chloride) (PVC) composites. The effect of pretreatment of rice straw, concentration of PVC, pressure as well as pressing temperature on the mechanical properties and water absorption was studied. Also, the effect of lignin as coupling agent on the mechanical properties and water absorption of composite was studied. Composites of rice straw comprising both PVC and a coupling agent offer superior properties compared to those made from only rice straw and PVC. The extent of improvement in the mechanical properties and dimensional stability of composites depended not only on the pretreatment of rice straw, concentration of PVC and lignin but also on pressure and pressing temperature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
用示差扫描量热法(DSC)研究了线形多嵌段聚氨酯(PU)与聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC)共混相容性,说明了PU/VC、PU/CPVC的相容是由于共混物中形成了新的氢键的缘故.聚酯型聚氨酯与PVC、CPVC的相容性要好子聚酸型聚氨酯,CPVC与PU的相容性又要好于PVC.聚氨酯中硬段的引入不利于PU/PVC、PU/CPVC的相容性.  相似文献   

17.
The synthesis of a block copolymer poly(vinyl chloride)‐b‐poly(n‐butyl acrylate)‐b‐poly(vinyl chloride) is reported. This new material was synthesized by single‐electron‐transfer/degenerative‐chain‐transfer‐mediated living radical polymerization (SET‐DTLRP) in two steps. First, a bifunctional macroinitiator of α,ω‐di(iodo)poly (butyl acrylate) [α,ω‐di(iodo)PBA] was synthesized by SET‐DTLRP in water at 25 °C. The macroinitiator was further reinitiated by SET‐DTLRP, leading to the formation of the desired product. This ABA block copolymer was synthesized with high initiator efficiency. The kinetics of the copolymerization reaction was studied for two PBA macroinitiators with number–average molecular weight of 10 k and 20 k. The relationship between the conversion and the number–average molecular weight was found to be linear. The dynamic mechanical thermal analysis suggests just one phase, indicating that copolymer behaves as a single material with no phase separation. This methodology provides the access to several block copolymers and other complex architectures that result from combinations of thermoplastics (PVC) and elastomers (PBA). From industrial standpoint, this process is attractive, because of easy experimental setup and the environmental friendly reaction medium. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3001–3008, 2006  相似文献   

18.
Measurements of the complex relative permittivity of poly(vinyl acetate) from 35 °C to 190 °C and poly(vinyl chloride) from 90 °C to 150 °C in the frequency range 10–2 –107 Hz and the pressure range 1–5000 bar are reported. Details of the pressure generating system and of the dielectric equipment are described.  相似文献   

19.
The chloroiodomethyl chain ends of poly(vinyl chloride) (PVC) obtained by the single‐electron‐transfer/degenerative‐chain‐transfer mediated living radical polymerization of vinyl chloride initiated with iodoform were quantitatively functionalized by the reaction with 2‐allyloxyethanol (CH2?CHCH2OCH2CH2OH). This reaction was performed in dimethyl sulfoxide at 70 °C and was catalyzed by sodium dithionite/sodium bicarbonate. The resulting product is the first example of telechelic PVC [α,ω‐di(hydroxy)PVC]. A possible mechanism for this reaction was suggested. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1255–1260, 2005  相似文献   

20.
The tertiary chlorine (Clt) content of vinyl chloride/2‐chloropropene copolymers [P(VC‐co‐2CP)] was determined by NMR spectroscopy. Copolymers containing 6.8–47.0 Clt's per P(VC‐co‐2CP) chain were used to initiate the cationic grafting of α‐methylstyrene, norbornadiene, indene, and norbornene with Et2AlCl under various conditions. Grafting was demonstrated by selective solvent extraction, and the effect of the experimental conditions on the grafting efficiency was examined. Select rheological and thermal characteristics of P(VC‐co‐2CP) grafts, including the glass‐transition temperature, heat deflection temperature, and discoloration upon heating, were studied. P(VC‐co‐2CP) carrying 7–11 poly(α‐methylstyrene) or polynorbornadiene branches per chain raised the glass‐transition temperature to, or above, that of a blend control. P(VC‐co‐2CP)s fitted with polyindene or polynorbornene branches were less effective in raising the mechanical properties. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3644–3651, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号