首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of the title dipeptides, C9H18N2O4·0.33H2O, C12H16N2O4 and C8H16N2O4S·0.34H2O, complete a series of investigations focused on l ‐Xaa‐l ‐serine peptides, where Xaa is a hydro­phobic residue. All three structures are divided into hydro­philic and hydro­phobic layers. The hydro­philic layers are thin for l ‐phenyl­alanyl‐l ‐serine, rendered possible by an unusual peptide conformation, and thick for l ‐isoleucyl‐l ‐serine and l ‐methionyl‐l ‐serine, which include cocrystallized water mol­ecules on the twofold axes.  相似文献   

2.
The crystal structure of N‐(l ‐2‐amino­butyryl)‐l ‐alanine, C7H14N2O3, is closely related to the structure of l ‐alanyl‐l ‐alanine, both being tetragonal, while the retro‐analogue 2‐(l ‐alanyl­amino)‐l ‐butyric acid 0.33‐hydrate, C7H14N2O3·­0.33H2O, forms a new type of molecular columnar structure with three peptide mol­ecules in the asymmetric unit.  相似文献   

3.
The side chains of l ‐alanyl‐l ‐me­thionine hemihydrate, C8H16N2O3S·0.5H2O, form hydro­phobic columns within a three‐dimensional hydrogen‐bond network that includes extended polymers of cocrystallized water mol­ecules and Cα—H⋯S interactions.  相似文献   

4.
The peptide bond in the crystal structure of the title compound, C8H16N2O4, deviates substantially from planarity in the same manner as in other l ‐Ser‐l ‐Xaa dipeptides, where Xaa is a hydro­phobic residue.  相似文献   

5.
The low‐temperature crystal and mol­ecular structure analyses of two modifications of l ‐alanyl‐l ‐tyrosyl‐l ‐alanine with water, C15H21N3O5·2.63H2O [(I), at 9 K], and ethanol, C15H21N3O5·C2H5O [(II), at 20 K], solvent mol­ecules in the crystal lattice show that the overall conformations of both modifications of the title tripeptide are practically the same. Moreover, despite the presence of different solvent mol­ecules in the crystal lattice, the specific inter­molecular inter­actions characteristic for individual tripeptide mol­ecules of (I) and (II) are conserved. The crystal packing of the two modifications of Ala‐Tyr‐Ala differ from each other only in the solvent region. The tight arrangements of tripeptide mol­ecules seem to be responsible for similar displacement parameters for all non‐H atoms, despite the different distances from the mol­ecular centre of mass. Comparison of the displacement parameters between the room‐ and low‐temperature structures shows that an average Ueq value decrease of about 80% takes place at 9 K [for (I)] and 20 K [for (II)] with respect to room temperature.  相似文献   

6.
The crystal structures of the four dipeptides l ‐seryl‐l ‐asparagine monohydrate, C7H13N3O5·H2O, l ‐seryl‐l ‐tyrosine monohydrate, C12H16N2O5·H2O, l ‐tryptophanyl‐l ‐serine monohydrate, C14H17N3O4·H2O, and l ‐tyrosyl‐l ‐tryptophan monohydrate, C20H21N3O4·H2O, are dominated by extensive hydrogen‐bonding networks that include cocrystallized solvent water molecules. Side‐chain conformations are discussed on the basis of previous observations in dipeptides. These four dipeptide structures greatly expand our knowledge on dipeptides incorporating polar residues such as serine, asparagine, threonine, tyrosine and tryptophan.  相似文献   

7.
Crystals of l ‐leucinium perchlorate, C6H14NO2+·ClO4, are built up from protonated l ‐leucinium cations and perchlorate anions. l ‐Leucinium cations related by a twofold screw axis are inter­connected by N—H⋯O hydrogen bonds into zigzag chains parallel to [010]. The O atoms of the perchlorate anions act as acceptors of hydrogen bonds that link the l ‐leucinium chains into separated but inter­acting two‐dimensional layers parallel to (001). Since the title compound crystallizes in a non‐centrosymmetric space group, it can be useful as a material for non‐linear optics. The efficiency of second harmonic generation is about twice that of K2[HPO4].  相似文献   

8.
The crystal structure of l ‐methionyl‐l ‐alanine, C8H16N2O3S, is very similar to that of l ‐valyl‐l ‐alanine [Görbitz & Gundersen (1996). Acta Cryst. C 52 , 1764–1767] and other related dipeptides in space group P61, but there are seven mol­ecules in the asymmetric unit. The Z value of 42 is the highest ever observed for a chiral mol­ecule.  相似文献   

9.
The crystal structures of the title compounds, (S)‐1‐carboxy‐3‐(methyl­sulfanyl)­propanaminium chloride, C5H12NO2S+·Cl, and (S)‐1‐carboxy‐3‐(methyl­selanyl)­propanaminium chloride, C5H12NO2Se+·Cl, are isomorphous. The proton­ated l ‐methionine and l ‐seleno­methionine mol­ecules have almost identical conformations and create very similar contacts with the Cl anions in the crystal structures of both compounds. The amino acid cations and the Cl anions are linked viaN—H⋯Cl and O—H⋯Cl hydrogen bonds.  相似文献   

10.
In the 1:1 adduct formed between l ‐phenyl­alanine and 4‐nitro­phenol [alternative IUPAC name: (2S)‐2‐ammonio‐3‐phenyl­propanoate–4‐nitro­phenol (1/1)], C9H11NO2·C6H5NO3, the l ‐phenyl­alanine mol­ecule is in the zwitterionic state. The overall structure is stabilized via strong hydrogen bonding between polar zones and van der Waals inter­actions between non‐polar zones, which alternate with the polar zones.  相似文献   

11.
One of the amino H atoms of l ‐phenyl­alanyl‐l ‐valine, C14H20N2O3, participates in a rare secondary interaction in being accepted by the aromatic ring of the phenyl­alanine side chain. The phenyl group is also a donor in a weak hydrogen bond to the peptide carbonyl group.  相似文献   

12.
The title dipeptide, 1‐(tert‐butoxy­carbonyl‐d ‐alanyl)‐N‐iso­propyl‐l ‐pipecol­amide or Boc‐d ‐Ala‐l ‐Pip‐NHiPr (H‐Pip‐OH is pipecolic acid or piperidine‐2‐carboxylic acid), C17H31N3­O4, with a d –l heterochiral sequence, adopts a type II′β‐­turn conformation, with all‐trans amide functions, where the C‐terminal amide NH group interacts with the Boc carbonyl O atom to form a classical i+3 i intramolecular hydrogen bond. The Cα substituent takes an axial position [Hα (Pip) equatorial] and the trans pipecolamide function is nearly planar.  相似文献   

13.
Ammonium N‐acetyl‐l ‐threoninate, NH4+·C6H10NO4?, and methyl­ammonium N‐acetyl‐l ‐threoninate, CH6N+·­C6H10NO4?, crystallize in the orthorhombic P212121 and monoclinic P21 space groups, respectively. The two crystals present the same packing features consisting of infinite ribbons of screw‐related N‐acetyl‐l ‐threoninate anions linked together through pairs of hydrogen bonds. The cations interconnect neighbouring ribbons of anions involving all the nitrogen‐H atoms in three‐dimensional networks of hydrogen bonds. The hydrogen‐bond patterns include asymmetric `three‐centred' systems. In both structures, the Thr side chain is in the favoured (g?g+) conformation.  相似文献   

14.
The structure of l ‐valinol [(S)‐(+)‐2‐amino‐3‐methyl­butan‐1‐ol or hydroxy­lated l ‐valine], C5H13NO, has been determined at 100 K by single‐crystal X‐ray diffraction. The independent atom model geometry, Flack parameter and figures of merit are compared with results from an invariom structure refinement. The latter provides H‐atom positions free of independent atom model bias and therefore yields a more accurate hydrogen‐bond pattern, and the geometry from invariom refinement shows an improved agreement with results from a quantum chemical geometry optimization.  相似文献   

15.
The title bis­(glycyl‐l ‐aspartic acid) oxalate complex {systematic name: bis­[2‐(2‐ammonio­acetamido)butane­dioic acid] oxalate 0.4‐hydrate}, 2C6H11N2O5+·C2O42−·4H2O, crystallizes in a triclinic space group with the planar peptide unit in a trans conformation. The asymmetric unit consists of two glycyl‐l ‐aspartic acid mol­ecules with positively charged amino groups and neutral carboxyl groups, and an oxalate dianion. The twist around the C—Cα bond indicates that both the peptide mol­ecules adopt extended conformations, while the twist around the N—Cα bond shows that one has a folded and the other a semi‐extended state. The present complex can be described as an inclusion compound with the dipeptide mol­ecule as the host and the oxalate anion as the guest. The usual head‐to‐tail sequence of aggregation is not observed in this complex, as is also the case with the glycyl‐l ‐aspartic acid dihydrate mol­ecule. The study of aggregation and inter­action patterns in binary systems is the first step towards understanding more complex phenomena. This further leads to results that are of general interest in bimolecular aggregation.  相似文献   

16.
The title peptide N‐benzyl­oxy­carbonyl–ΔLeu–l ‐Ala–l ‐Leu–OCH3 [methyl N‐(benzyl­oxy­carbonyl)‐α,β‐de­hydro­leucyl‐l ‐alanyl‐l ‐leucinate], C24H35N3O6, was synthesized in the solution phase. The peptide adopts a type II′β‐turn conformation which is stabilized by an intramolecular 4 1 N—H?O hydrogen bond. The crystal packing is stabilized by two intermolecular N—H?O hydrogen bonds.  相似文献   

17.
Cations and anions of the title compound {systematic name: 1‐[4‐(amino­carbonyl)butyl]guanidinium bis­(hydrogen­squarate)}, C6H17N5O2+·2C4HO4, are connected into a three‐dimensional network by inter­molecular N—H⋯O hydrogen bonds between the l ‐argininamidium ammonium, amide and guanidinium functions and the hydrogensquarate carbonyl O atoms. The independent hydrogensquarate monoanions are linked into dimers by pairs of O—H⋯O′ hydrogen bonds.  相似文献   

18.
The crystal structure of methyl 4‐O‐β‐l ‐fuco­pyran­osyl α‐d ‐gluco­pyran­oside hemihydrate C13H24O10·0.5H2O is organized in sheets with antiparallel strands, where hydro­phobic interaction accounts for partial stabilization. Infinite hydrogen‐bonding networks are observed within each layer as well as between layers; some of these hydrogen bonds are mediated by water mol­ecules. The conformation of the disaccharide is described by the glycosidic torsion angles: ?H = ?6.1° and ψH = 34.3°. The global energy minimum conformation as calculated by molecular mechanics in vacuo has ?H = ?58° and ψH = ?20°. Thus, quite substantial changes are observed between the in vacuo structure and the crystal structure with its infinite hydrogen‐bonding networks.  相似文献   

19.
The title compound (with the systematic name 2‐{[(1S)‐1‐(methoxy­carbonyl)‐3‐methyl­butyl]amino­carbonyl}benzoic acid), C15H19NO5, crystallizes in the monoclinic space group P21, with two independent mol­ecules per asymmetric unit. The most notable difference between the two mol­ecules is in the dihedral angles between the planes of the carboxyl group and the benzene ring, which are 3.5 (3) and 25.7 (1)°. This difference may account for the fact that two competing reactions are observed in aqueous solution, namely cyclization to form the imide N‐phthaloyl­leucine and hydrolysis of N‐(2‐carboxy­benzoyl)‐l ‐leucine methyl ester to phthalic acid and leucine.  相似文献   

20.
The structures of two compounds of l ‐tartaric acid with quinoline, viz. the proton‐transfer compound quinolinium hydrogen (2R,3R)‐tartrate monohydrate, C9H8N+·C4H5O6·H2O, (I), and the anhydrous non‐proton‐transfer adduct with quinaldic acid, bis­(quinolinium‐2‐carboxyl­ate) (2R,3R)‐tar­taric acid, 2C10H7NO2·C4H6O6, (II), have been determined at 130 K. Compound (I) has a three‐dimensional honeycomb substructure formed from head‐to‐tail hydrogen‐bonded hydrogen tartrate anions and water mol­ecules. The stacks of π‐bonded quinolinium cations are accommodated within the channels and are hydrogen bonded to it peripherally. Compound (II) has a two‐dimensional network structure based on pseudo‐centrosymmetric head‐to‐tail hydrogen‐bonded cyclic dimers comprising zwitterionic quinaldic acid species which are inter­linked by tartaric acid mol­ecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号