首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relaxation time of a polymer chain in an elongational flow field was investigated for hydroxypropylcellulose (HPC) semidilute solution systems by two methods: phenomenological analysis of elongational flow-induced birefringence, and dynamic light scattering (DLS) and rheological measurements. To understand the relaxation time of an entangled semiflexible polymer solution in an elongational flow field, scaling analysis of the elongational flow-induced birefringence curve was performed. The results of both temperature and concentration scaling analyses showed that birefringence curves at different temperatures and at several HPC concentrations were described well by a universal birefringence–strain rate curve. This scaling behavior was compared with the "fuzzy cylinder" model. The critical strain rate corresponded to the correlation time of the slow relaxation mode determined by DLS measurement and the relaxation spectrum obtained by dynamic viscoelasticity measurement. The elongational flow-induced birefringence observed in an HPC semidilute solution was concluded to be attributed to the orientation of the HPC segment in the entangled molecular system, because the dominant relaxation mode is found to be the concentration fluctuation of an entangled molecular cluster in a quiescent state.  相似文献   

2.
The phase behavior and phase‐separation dynamics of polystyrene/polyvinyl methyl ether (PS/PVME) blend with a critical composition of 70 vol % PVME were examined with a light scattering technique under a shear‐rate range of 0.1–40 s?1. If the shear rates were less than 8 s?1 and the starting temperatures of the measurement were 343 and 383 K, respectively, two cloud points were observed, whereas after the shear rate was higher than 8 s?1, only one cloud point existed, 20 K higher than that of the static state of the blend. Investigation of the phase‐separation dynamics at 443 K suggested that in the vorticity direction the phase‐separation behavior at the early stage and the later stage can be explained by Cahn–Hilliard linearized theory and the exponent growth law, respectively. Phase separation occurs after a shearing time, which was called a delay time τd. The delayed time τd, the apparent diffusion coefficient, and the exponent term of the blend show strong dependence on shear rates. A theoretical prediction of the phase behavior of PS/PVME under a shear flow field by introducing an elastic energy term into Flory's equation‐of‐state theory was made, and the prediction was consistent with the experimental results. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 661–669, 2003  相似文献   

3.
The effects of adding A–B diblock copolymer to a polymer blend (A/B) on phase‐separation kinetics and morphology have been investigated in a fixed shallow‐quench condition (ΔT = 1.5 °C) by in situ time‐resolved light scattering and phase‐contrast optical microscopy. A shear‐quench technique was used in this study instead of a conventional temperature‐quench method. Mixtures of nearly monodisperse low relative‐molecular masses of polybutadiene (Mw = 2.8 kg/mol), polystyrene (Mw = 2.6 kg/mol), and a near‐symmetric butadiene–styrene diblock copolymer (Mw = 6.3 kg/mol) as an interfacial modifier were studied. We observed that the addition of the diblock copolymer could either retard or accelerate the phase‐separation kinetics depending on the concentration of the diblock copolymer in the homopolymer blends. In contrast to the conventional temperature quench, we observed complex phase‐separation kinetics in the intermediate and late stages of phase separation by the shear‐quench technique. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 819–830, 2001  相似文献   

4.
The thermodynamics of polyacrylonitrile (PAN) terpolymer/dimethyl sulphoxide (DMSO)/water system was investigated by viscometric method. Fourier transform infrared (FTIR) measurement of the temperature dependence of polymer/solvent interaction was performed in the range of 25–80 °C, which was in good agreement with viscometric results. Meanwhile, the upper critical solution temperature (UCST) for PAN terpolymer/DMSO/water system, which is proved to be stable one, was determined from the temperature dependence of the expansion factor αη 3 . The morphology of PAN precursor prepared by dry‐jet‐wet spinning with different fiber‐forming conditions was examined with a scanning electron microscope (SEM). Judging from SEM photographs, not only the number and size of microvoids of PAN precursor gradually increase, with increasing the temperature of coagulation bath, but also the cross‐section shape of PAN precursor changes from nephroid shape to elliptical shape or circular shape. Therefore, PAN precursor with different microstructures can be fabricated at different quenching‐depths, suggesting that the final microstructure of the PAN precursor greatly depends on the phase separation in the fiber‐forming process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1997–2011, 2008  相似文献   

5.
A blend of high‐density polyethylene and an elastomeric poly(ethylene‐co‐1‐octene) resin, containing 25 mol % octene and long‐chain branching, was phase‐separated in the melt under quiescent conditions. After melt flow, the blend had fine globular or interconnected phase morphologies that were interpreted as originating from the various stages of coarsening after liquid–liquid phase separation through spinodal decomposition. It was inferred that the miscibility of the blend was enhanced under melt flow. After cessation of flow, concurrent liquid–liquid and solid–liquid phase separation took place, resulting in the formation of an interpenetrating morphology comprising amorphous polyethylene, copolymer, and crystalline polyethylene. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 380–389, 2001  相似文献   

6.
Melt rheological behaviors of hyperbranched‐polystyrene (PS) copolymerized by dendric macromonomer technique are presented. The time–temperature superposition principle was applicable to the hyperbranched‐PS. The branched‐PS showed slightly lower zero‐shear viscosity in comparison with linear PS regardless of a presence of a number of branches expected from the dendric macromonomer technique. Although the influence of use of multimethacryloyl macromonomer in the polymerization process was marginal for linear viscoelastic regime, nonlinear shear and uniaxial elongational flows showed distinct differences between linear and branched‐PS. The strain dependence of the damping function became weak as increase of macromonomer content. The branched‐PS exhibited the growing elongational viscosity function comparing with linear PS. This prominent effect on the elongational flow behavior can be explained by the molecular architecture of the branched‐PS. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2226–2237, 2009  相似文献   

7.
A flow field imposed on a solution of rodlike particles tends to align the rods owing to friction between the fluid and the rods. The potential energy of rods in a steady-state, homogeneous, and irrotational flow is superposed on the equilibrium Gibbs free energy of the quiescent solution to obtain the total free energy. The exact lattice treatment of Flory and Ronca is used in formulating the problem. Effects of flow on the orientational distribution function of rods and phase separation are analyzed with particular reference to elongational and pure shear flows. Calculations carried out for various compositions and flow characteristics reveal the presence of a region where the order parameter is sensitive to changes in prevailing flow conditions. Experimental determination of orientation by measuring flow birefringence is discussed.  相似文献   

8.
The effect of phase‐separated morphology on the rheological properties of polystyrene/poly(vinyl methyl ether) (PS/PVME) blend was investigated by optical microscopy (OM), light scattering (LS) method, and rheology. The blend had a lower critical solution temperature (LCST) of 112°C obtained by turbidity experiment using LS at a heating rate of 1°C/h. Three different blend compositions (critical 30/70 PS/PVME by weight) and two off‐critical (50/50 and 10/90)) were prepared. The rheological properties of each composition were monitored with phase‐separation time after a temperature jump from a homogeneous state to the preset phase‐separation temperature. For the 30/70 and 50/50 blends, it was found that with phase‐separation time, the storage and loss moduli (G′ and G″) increased at shorter times due to the formation of co‐continuous structures resulting from spinodal decomposition. Under small oscillatory shearing, shear moduli gradually decreased with time at longer phase‐separation times due to the alignment of co‐continuous structures toward the flow direction, as verified by scanning electron microscopy. However, for the 10/90 PS/PVME blend, the rheological properties did not change with phase‐separation times. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 889–906, 1999  相似文献   

9.
Strain‐hardening behavior in the elongational viscosity of binary blends composed of a linear polymer and a crosslinked polymer, in which the molecular chains of the linear polymer were incorporated into the network chains of the crosslinked polymer, was studied. Blending the crosslinked polymer characterized as the gel just beyond the sol–gel transition point greatly enhanced the strain‐hardening behavior in the elongational viscosity, even though the amount of the crosslinked polymer was only 0.3 wt %. However, the crosslinked polymer, which was far beyond or below the sol–gel transition point, had little influence on the elongational viscosity as well as the shear viscosity. The stretching of the chain sections between the crosslink points was responsible for the strain‐hardening behavior. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 228–235, 2001  相似文献   

10.
The phase behavior of a water/hydroxypropyl cellulose/maleic acid-styrene copolymer (H2O/HPC/MAc-S) system was investigated in the semi-dilute range by turbidimetry, rheology, and optical microscopy. The two polymers under investigation form interpolymer complexes via hydrogen bonding. In the case of a total polymer concentration of cpol = 5 mg . mL(-1) a second phase segregates upon heating the homogeneous ternary system. By applying a constant shear rate (gamma = 50 s(-1)) the phase separation temperature of the system is 10-15 degrees C lower than for an unsheared one. For cpol = 10 mg . mL(-1) phase separation has already occurred at room temperature when the two binary polymer solutions are mixed. The distribution of the partners among the coexisting phases was examined by FT-IR spectroscopy. The stoichiometry of the interpolymeric complex (IPC) was estimated to be HPC/MAc-S = 40:60 (w/w) independent of cpol.  相似文献   

11.
Pretransitional fluctuations in the isotropic phase of liquid crystalline and non‐liquid crystalline alkyl cyanobiphenyls have been investigated using light scattering and magnetic birefringence measurements. We find evidence for a virtual isotropic‐nematic phase transition in short‐chain alkyl cyanobiphenyls with no observable nematic phase. The measured temperature dependence of fluctuations is well‐described by mean‐field theory. Virtual phase transition temperatures extrapolated from separate light scattering and magnetic birefringence experiments are in good agreement. Landau–de Gennes model parameters for the compounds investigated are calculated from the experimental results.  相似文献   

12.
Temperature‐induced phase separation of poly(N‐isopropylacrylamide) in aqueous solutions was studied by attenuated total reflectance (ATR)/Fourier transform infrared spectroscopy. The main objectives of the study were to understand, on a molecular level, the role of hydrogen bonding and hydrophobic effects below and above the phase‐separation temperature and to derive the scenario leading to this process. Understanding the behavior of this particular system could be quite relevant to many biological phenomena, such as protein denaturation. The temperature‐induced phase transition was easily detected by the ATR method. A sharp increase in the peaks of both hydrophobic and hydrophilic groups of the polymer and a decrease in the water‐related signals could be explained in terms of the formation of a polymer‐enriched film near the ATR crystal. Deconvolution of the amide I and amide II peaks and the O? H stretch envelope of water revealed that the phase‐separation scenario could be divided, below the phase‐separation temperature, into two steps. The first step consisted of the breaking of intermolecular hydrogen bonds between the amide groups of the polymer and the solvent and the formation of free amide groups, and the second step consisted of an increase in intramolecular hydrogen bonding, which induced a coil–globule transition. No changes in the hydrophobic signals below the separation temperature could be observed, suggesting that hydrophobic interactions played a dominant role during the aggregation of the collapsed chains but not before. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1665–1677, 2001  相似文献   

13.
The purpose of this article is to study the fast structural changes that take place during the deformation and heat setting of uniaxially preoriented poly(ethylene 2,6‐naphthalate) films. For this purpose, an online birefringence measurement system coupled with a heat‐setting oven was used. In the online birefringence system, whose details were reported previously (H. Venkatesvaran and M. Cakmak, SPE ANTEC Tech Pap 1993, 39, 257; H. Venkatesvaran and M. Cakmak, Polym Eng Sci 2001, 41, 341), a green and red laser is passed through the films being annealed in a heat‐setting chamber; the resulting data are analyzed for the details of structural mechanisms that take place during this process. This technique is shown to be capable of detecting reversals in birefringence development; as a result, complex sequences of structural evolution can be tracked. The design of this system allows one to observe not only the increase or decrease in birefringence during the course of the heat‐setting process but also the rate dependencies on processing variables. In this study, we establish that the rate of structural rearrangement, as detected by birefringence, depends strongly on the state of the pre‐existing chain orientation and the level of crystallinity. Increased levels of preorientation in the films results in decreases in the rate of birefringence change during heat setting. This is primarily attributed to the increased levels of steric hindrance developed with the increase in orientation and crystallinity in the preoriented samples. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 1107–1121, 2001  相似文献   

14.
Simultaneous birefringence and elongational viscosity measurements were carried out on molten commercial grade, low-density polyethylenes during simple elongational flow at constant strain rate and constant temperature. The birefringence increased with time during constant strain rate elongation. The increase in birefringence was a linear function of elongational stress throughout whole elongation, but the elongational viscosity increased in two stages. The increase in elongational viscosity can be divided into linear viscoelastic and nonlnear viscoelastic regions. The linear region appeared at small strain and the nonlinear region appeared at strain greater than 0.7. The elongational viscosity in the nonlinear region increased much more rapidly than that in the linear region. The Gaussian approximation, which is commonly used in molecular models, could be used for the transient elongational flow. A constant stress-optical coefficient C = 1.3 × 10?10 cm2/dyn was obtained for all the elongational experiments, independent of strain rate (0.002-0.2s?1). The stress-optical coefficients were weakly dependent on temperature, as predicted by the theory of rubber elasticity.  相似文献   

15.
Thermally induced phase separation is a fabrication technique for porous polymeric structures. By means of easy‐to‐tune processing parameters, such as system composition and demixing temperature, a vast latitude of average pore dimensions, pore size distributions, and morphologies can be obtained. The relation between demixing temperature and morphology was demonstrated via cloud point curve measurement and foams fabrication with controlled thermal protocols, for the model system poly‐l ‐lactide–dioxane–water. The morphologies obtained at a temperature lower than cloud point showed a closed‐pore architecture, suggesting a “nucleation‐and‐growth” separation mechanism, which produced larger pores at higher holding times. Conversely, the porous structures attained when holding the sample above the cloud point exhibited open pores with dimensions independent of time, denoting a phase separation occurring during sample freezing. Finally, the influence of the cooling rate on final morphology was investigated, showing a clear correlation with microstructure and pore size. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 979–983  相似文献   

16.
We derived typical phase diagrams for aqueous solutions of methyl cellulose (MC) of different molecular weights via micro‐differential scanning calorimetry, small‐angle X‐ray scattering, and visual inspection. The phase diagrams showed the cooccurrence of gelation and phase separation and qualitatively agreed with the theoretically calculated diagrams. The sol–gel transition line and phase separation line of a lower critical solution point type shifted toward lower temperatures and lower concentrations with an increase in the MC molecular weight. The sol–gel transition line intersected at a temperature higher than the critical point of the phase separation; therefore, both sol–gel phase separation and gel–gel phase separation were possible, depending on the temperature. Specifically, through visual inspection of a high molecular weight MC sample in the critical temperature region, we observed phase separation into two coexisting gels with different polymer concentrations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 91–100, 2001  相似文献   

17.
Here, we report that carboxylated poly‐l ‐lysine, a polyampholyte, shows lower critical solution temperature (LCST)‐type temperature‐responsive liquid–liquid phase separation and coacervate formation in aqueous solutions. The phase‐separation temperature of polyampholytes is strongly affected by the polymer concentration, balance between the carboxyl and amino groups, hydrophobicity of the side chain, and NaCl concentration in the solution. We concluded that the phase separation was caused by both electrostatic interactions between the carboxyl and amino groups and intermolecular hydrophobic interactions. The addition of NaCl weakened the electrostatic interactions, causing the two phases to remix. The introduction of the hydrophobic moiety decreased the phase‐separation temperature by making the molecular interactions stronger. Finally, temperature‐responsive hydrogels were prepared from the polyampholytes to explore their applicability as biomaterials and in drug delivery systems. The fine‐tuning of the phase‐separation temperature of poly‐l ‐lysine‐based polyampholytes through molecular design should open new avenues for their use in precisely controlled biomedical applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 876–884  相似文献   

18.
The influence of the cationic polyelectrolyte poly(diallyldimethylammonium chloride) on structure formation in the inverse micellar region (L2 phase) of the ternary system 3 (N,N-dimethyldodecylammonio)propanesulfonate/alcohol/water has been investigated. Up to a polymer concentration in the aqueous phase of 10 wt %, an isotropic phase still exists. As the chain length of the alcohol component increases, the isotropic phase region is reduced and shifted in direction to the water corner. The isotropic polyelectrolyte-modified L2 phase of the heptanol-based microemulsion has been studied in much more detail by means of conductometric, rheological, and differential scanning calorimetry measurements. The polyelectrolyte-modified microemulsion phase shows a characteristic low shear viscosity and Newtonian flow behavior. The characteristic features of the nonpercolated microemulsion droplets are the low conductivity and the disappearance of bulk water. One can conclude from the experimental data that the individual nonpercolated polyelectrolyte-stuffed microemulsion droplets are approximately uniform in size. In addition, the area of the polyelectrolyte-modified inverse microemulsion phase with heptanol and octanol depends on the temperature. This means that the area of the L2 region can be increased by the temperature being increased from room temperature to 40 °C. This behavior can be explained by a change in the bending elasticity of the surface film induced by Coulombic interactions between the functional groups of the polyelectrolyte and the surfactant head groups. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 742–751, 2004  相似文献   

19.
In this study, the viscoelastic phase separation process was studied further by time‐resolved light scattering, differential scanning calorimetry, and scanning electron microscopy in the system of poly(ether imide)‐modified bisphenol‐A dicyanate. It was observed that the evolution time of phase structure and relaxation time of diffusion flow of the bisphenol‐A dicyanate were similar with the phase diagram of curing conversion versus content of PEI. The results suggested that the viscoelastic phase separation was affected by the curing conversion of the system at the onset point of phase separation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 517–523, 2006  相似文献   

20.
The heat capacity or reversing heat flow signal from modulated‐temperature differential scanning calorimetry can be used to measure the onset of phase separation in a poly(vinylmethylether)/water mixture, clearly showing the special type III lower critical solution temperature demixing behavior. Characteristic of this demixing behavior is a three‐phase region, which is detected in the nonreversing heat flow signal. Stepwise quasi‐isothermal measurements through the phase transition show large excess contributions in the (apparent) heat capacity signal, caused by demixing/remixing heat effects on the timescale of the modulation (fast process). These excess contributions and their time‐dependent evolutions (slow process) are useful in understanding the kinetics of phase separation and the morphology (interphase) development. Care has to be taken, however, in interpreting the heat capacity signal derived from the amplitude of the modulated heat flow because nonlinear effects lead to the occurrence of higher harmonics. Therefore, the raw heat flow signal for quasi‐isothermal demixing and remixing measurements is also examined in the time domain. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1824–1836, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号