首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the title compound, (C10H9N2)2[Pt(CN)6]·2C10H8N2 or [(Hbpy)+]2[Pt(CN)6]2−·2bpy, where bpy is 4,4′‐bipyridine, the Hbpy+ cations and bpy mol­ecules form a hydrogen‐bonded two‐dimensional cationic approximately square grid parallel to the (110) plane. The [Pt(CN)6]2− dianions reside in the cavities within this grid, with the nitrile N atoms forming weak hydrogen bonds with the CH groups in the cationic lattice.  相似文献   

2.
The crystal structures of 3,3‐di­methyl‐3‐(tri­chloro­germyl)­propionic acid, [Ge(C5H9O2)Cl3], 3,3‐di­methyl‐3‐(tri­phenyl­germyl)­propionic acid, [Ge(C6H5)3(C5H9O2)], and 3,3‐di­methyl‐3‐(tri‐p‐toly­lgermyl)­propionic acid, [Ge(C7H7)3(C5H9O2)], have slightly distorted tetrahedral geometries about the Ge atoms. All the structures form dimers via strong O—H·O hydrogen bonds, resulting in eight‐membered rings that can be best described in terms of graph‐set notation (8).  相似文献   

3.
A novel copper(II) coordination polymer, poly­[[[aqua­copper(II)]‐μ3‐2,2′‐bipyridyl‐3,3′‐di­carboxyl­ato‐κ4N,N′:O:O′] dihydrate], {[Cu(C12H6N2O4)(H2O)]·2H2O}n, was obtained by the reaction of CuCl2·2H2O and 2,2′‐bipyridyl‐3,3′‐di­carboxylic acid (H2L) in water. In the mol­ecule, each CuII atom is five‐coordinated and lies at the centre of a square‐pyramidal basal plane, bridged by three L ligands to form a two‐dimensional (4,4)‐network. Each L moiety acts as a bridging tetradentate ligand, coordinating to three CuII atoms through its two aromatic N atoms and two O atoms of the two carboxyl groups. The two‐dimensional square‐grid sheets superimpose in an off‐set fashion through the inorganic water layer.  相似文献   

4.
In the title compound, C20H16N2O5, both of the 1‐acetyl­isatin (1‐acetyl‐1H‐indole‐2,3‐dione) moieties are planar and form a dihedral angle of 74.1 (1)°. Weak intermolecular hydrogen bonds and C—H?π interactions stabilize the packing in the crystal.  相似文献   

5.
In the title compound, 2C10H14N4·3C6HF5O, one of the pentafluorophenol molecules resides on a mirror plane bisecting the O...F axis. The components aggregate by N—H...N, N—H...O and O—H...N hydrogen bonds involving equal disordering of the H atoms into molecular ensembles based on a 2:1 pyrazole–phenol cyclic pattern [O...N = 2.7768 (16) Å and N...N = 2.859 (2) Å], crosslinked into one‐dimensional columns via hydrogen bonding between the outer pyrazole groups and additional pentafluorophenol molecules. The latter yields a 1:1 pyrazole–phenol catemer with alternating strong O—H...N [2.5975 (16) Å] and weaker N—H...O [2.8719 (17) Å] hydrogen bonds. This is the first reported molecular adduct of a pentafluorinated phenol and a nitrogen base, and suggests the utility of highly acidic phenols and pyrazoles for developing hydrogen‐bonded cocrystals.  相似文献   

6.
In the title compound, C10H6N4O4S2, (I), the molecule has a centre of inversion. The structure is a positional isomer of 5,5′‐dinitro‐2,2′‐dithiodipyridine [Brito, Mundaca, Cárdenas, López‐Rodríguez & Vargas (2007). Acta Cryst. E 63 , o3351–o3352], (II). The 3‐nitropyridine fragment of (I) shows excellent agreement with the bonding geometries of (II). The most obvious differences between them are in the S—S bond length [2.1167 (12) Å in (I) and 2.0719 (11) Å in (II)], and in the C—Cipso—Nring [119.8 (2)° in (I) and 123.9 (3)° in (II)] and S—C—C [122.62 (18)° in (I) and 116.0 (2)° in (II)] angles. The crystal structure of (I) has an intramolecular C—H...O interaction, with an H...O distance of 2.40 (3) Å, whereas this kind of interaction is not evident in (II). The molecules of (I) are linked into centrosymmetric R44(30) motifs by a C—H...O interaction. There are no aromatic π–π stacking and no C—H...π(arene) interactions. Compound (I) can be used as a nucleophilic tecton in self‐assembly reactions with metal centres of varying lability.  相似文献   

7.
A novel cadmium(II) coordination polymer, poly[[[bis­(4,4′‐bipyridine)cadmium(II)]‐μ3‐4,4′‐dicarboxy­biphenyl‐3,3′‐di­carboxyl­ato] 0.35‐hydrate], {[Cd(C16H8O8)(C10H8N2)2]·0.35H2O}n, was obtained by reaction of Cd(CH3COO)2·3H2O, 4,4′‐bipyridine (4,4′‐bpy) and biphenyl‐3,3′,4,4′‐tetra­car­boxylic acid (H4L) under hydro­thermal conditions. Each CdII atom lies at the centre of a distorted octa­hedron, coordinated by four O atoms from three H2L2− ligands and N atoms from two monodentate 4,4′‐bpy ligands. Each H2L2− ligand coordinates to three CdII atoms through two carboxyl­ate groups, one acting as a bridging bidentate ligand and the other in a chelating bidentate fashion. Two Cd atoms, two H2L2− anions and four 4,4′‐bpy ligands form a ring dimer node, which links into an extended broad zonal one‐dimensional chain along the c axis.  相似文献   

8.
The title compound, C10H24N6O4, is the most stable type of nitric oxide (NO) donor among the broad category of discrete N‐diazeniumdiolates (NO adducts of nucleophilic small molecule amines). Sitting astride a crystallographic inversion center, the molecule contains a symmetric dimethylhexane‐1,6‐diamine structure bearing two planar O2‐methylated N‐diazeniumdiolate functional groups [N(O)=NOMe]. These two groups are parallel to each other and have the potential to release four molecules of NO. The methylated diazeniumdiolate substituent removes the negative charge from the typical N(O)=NO group, thereby increasing the stability of the diazeniumdiolate structure. The crystal was nonmerohedrally twinned by a 180° rotation about the real [101] axis. This is the first N‐based bis‐diazeniumdiolate compound with a flexible aliphatic main unit to have its structure analyzed and this work demonstrates the utility of stabilizing the N‐diazeniumdiolate functional group by methylation.  相似文献   

9.
The title compound, [Cu(ClO4)2(C4H9N3O2)2][Cu(C4H9N3O2)2(CH4O)2](ClO4)2·2CH3OH, comprises two independent CuII species lying on different inversion sites. In the Cu complexes, a distorted octa­hedral geometry arises (from basic square‐planar N4 coordination) from the weak coordination of two perchlorate ions (as Cu—O) in one species and two methanol mol­ecules in the other (also as Cu—O). Inter­actions between the O atoms of the perchlorate anions or methanol groups and the imide or amine NH groups afford an extensive inter­molecular hydrogen‐bonding network.  相似文献   

10.
In the title compound, [Ni(H2O)6](C17H13O7S)2·8H2O, the NiII atom is located on an inversion centre in the space group P21/c. The [Ni(H2O)6]2+, C17H13O7S and H2O components form many hydrogen bonds and there are π–π stacking inter­actions betweeen the isoflavone units. The hydrogen bonds, π–π stacking inter­actions and electrostatic inter­actions between the cation and anions link the components into a three‐dimensional structure.  相似文献   

11.
In the crystal structure of the title complex, [Ni2(C10H20N4O2)(C12H12N2)2](ClO4)2 or [Ni(dmaeoxd)Ni(dmbp)2](ClO4)2 {H2dmaeoxd is N,N′‐bis­[2‐(dimethyl­amino)ethyl]oxamide and dmbp is 4,4′‐dimethyl‐2,2′‐bipyridine}, the deprotonated dmaeoxd2− ligand is in a cis conformation and bridges two NiII atoms, one of which is located in a slightly distorted square‐planar environment, while the other is in an irregular octa­hedral environment. The cation is located on a twofold symmetry axis running through both Ni atoms. The dmaeoxd2− ligands inter­act with each other via C—H⋯O hydrogen bonds and π–π inter­actions, which results in an extended chain along the c axis.  相似文献   

12.
The (3R*,3′R*) configuration of the title compound, C18H16N2S2, (I), has been unambiguously elucidated by X‐­ray analysis. Mol­ecules of (I) have C2 symmetry to a good approximation and a strongly folded shape. The interplanar angle between the two halves of a mol­ecule is 67.11 (6)°.  相似文献   

13.
In the title compound, [Zn(C2H3N)(C16H21N3O)](ClO4)2·H2O, the ZnII ion is coordinated by two pyridyl N atoms, one amine N atom, and an ethanol O atom from the N,N′,N′′,O‐tetra­dentate 2‐[bis­(2‐pyridylethyl)amino]­ethanol donor ligand. The fifth coordination site is filled by an acetonitrile N atom, and there is one solvent water mol­ecule in the asymmetric unit. The 2+ charge of the cationic portion of the complex is balanced by two perchlorate counter‐anions.  相似文献   

14.
15.
A crystallographic investigation of the title compound, C22H28Cl2N4O4, using crystals obtained under different crystallization conditions, revealed the presence of two distinct polymorphic forms. The molecular conformation in the two polymorphs is very different: one adopts a `C' shape, whereas the other adopts an `S' shape. In the latter, the molecule lies across a crystallographic twofold axis. The `S'‐shaped polymorph undergoes a reversible orthorhombic‐to‐monoclinic phase transition on cooling, whereas the structure of the `C'‐shaped polymorph is temperature insensitive.  相似文献   

16.
The title compound, C14H10Cl2, crystallizes as colourless prisms with two symmetry‐independent mol­ecules in the unit cell. Numerous inter­molecular C—H⋯π inter­actions dominate in the crystal structure, where C—H⋯Cl and long Cl⋯Cl contacts are also observed.  相似文献   

17.
The mol­ecules of N,N′‐bis­(2‐pyridylmeth­yl)ferrocene‐1,1′‐diyl­dicarboxamide, [Fe(C12H11N2O)2], contain intra­molecular N—H⋯N hydrogen bonds and are linked into sheets by three independent C—H⋯O hydrogen bonds. The mol­ecules of the isomeric compound N,N′‐bis­(3‐pyridylmeth­yl)ferrocene‐1,1′‐diyldicarboxamide lie across inversion centres, and the mol­ecules are linked into sheets by a combination of N—H⋯N hydrogen bonds and π–π stacking inter­actions between pyridyl groups.  相似文献   

18.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

19.
The title compound, [Co(C6H13)(C11H19N4O2)(H2O)]ClO4, is in the general class of coenzyme B12 models which contain a ClO4 anion and a [Co(C6H13)(C11H19N4O2)(H2O)]+ cation. In the cation, the Co atom has a distorted octahedral coordination, with the n‐hexyl and H2O ligands in axial positions. The crystal data reveal some degree of flexibility in the Costa‐type system, which is similar to the coenzyme B12.  相似文献   

20.
The synthesis of 3,3′‐bis(dinitromethyl)‐5,5′‐azo‐1H‐1,2,4‐triazole ( 5 ) using the readily available starting material 2‐(5‐amino‐1H‐1,2,4‐triazol‐3‐yl)acetic acid ( 1 ) is described. All compounds were characterized by means of NMR, IR, and Raman spectroscopy. The energetic compound 5 was additionally characterized by single‐crystal X‐ray diffraction and DSC measurements. The sensitivities towards impact, friction and electrical discharge were determined. In addition, detonation parameters (e.g. heat of explosion, detonation velocity) of the target compound were computed using the EXPLO5 code based on the calculated (CBS‐4M) heat of formation and X‐ray density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号