首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard enthalpies of formation and strain energies for a series of homocubanes have been investigated by high-level ab initio G3(MP2)/B3LYP method. The relative stabilities of isomers are discussed. The comparison is made between the results of ab initio and molecular mechanics methods with the aim of assessing their performances. The usefulness of high-level calculations for generating thermochemical databases of relatively large molecules (e.g. C(11)H(14)) was also demonstrated.  相似文献   

2.
Standard molar enthalpies of formation in the gaseous state of a series of alkyl 3-methylbut-2-enoates have been obtained from combustion calorimetry and results from the temperature dependence of the vapor pressure measured by the transpiration method. To verify the experimental data, we have performed ab initio calculations of all compounds. Enthalpies of formation derived from the G3MP2 method are in excellent agreement with the experimental results. Quantitative analysis of strain effects in alkyl 3-methylbut-2-enoates was discussed in terms of deviations of deltafH degrees m(g) from the group additivity rules. Energetics of the cis-trans isomerization of carboxylic acid derivatives was studied using G3MP2 and DFT methods. Values of strain and cis-trans corrections derived in this work provide further improvement on the group-contribution methodology for prediction of the thermodynamic properties of compounds relevant to biodiesel.  相似文献   

3.
The relative stabilities of 2- and 3-acetylthiophenes have been evaluated by experimental thermochemistry and the results compared to high-level ab initio calculations. The enthalpies of combustion, vaporization, and sublimation were measured by rotating-bomb combustion calorimetry, Calvet microcalorimetry, correlation gas chromatography, and Knudsen effusion techniques and the gas-phase enthalpies of formation, at T = 298.15 K, were determined. Standard ab initio molecular orbital calculations at the G2 and G3 levels were performed, and a theoretical study on the molecular and electronic structures of the compounds studied has been conducted. Calculated enthalpies of formation using atomization and isodesmic reactions are compared with the experimental data. Experimental and theoretical results show that 2-acetylthiophene is thermodynamically more stable than the 3-isomer. A comparison of the substituent effect of the acetyl group in benzene and thiophene rings has been carried out.  相似文献   

4.
Thiophene-based compounds have widespread use in modern drug design, biodiagnostics, electronic and optoelectronic devices, and conductive polymers. The present study reports an experimental and computational thermochemical study on the relative stabilities of 2- and 3-thiopheneacetic acid methyl esters. The enthalpies of combustion and vaporization were measured by a rotating-bomb combustion calorimeter, Calvet microcalorimetry, and correlation gas chromatography, and the gas-phase enthalpies of formation at T=298.15 K were determined. Standard ab initio molecular orbital calculations at the G3 level were performed, and a theoretical study of the molecular and electronic structure of the compounds studied was carried out. Calculated enthalpies of formation, using atomization and isodesmic reactions are in very good agreement with the experimental results.  相似文献   

5.
Ionic liquids are attracting growing interest as alternatives to conventional molecular solvents. Experimental values of vapor pressure, enthalpy of vaporization, and enthalpy of formation of ionic liquids are the key thermodynamic quantities, which are required for the validation and development of the molecular modeling and ab initio methods toward this new class of solvents. In this work, the molar enthalpy of formation of the liquid 1-butyl-3-methylimidazolium dicyanamide, 206.2 +/- 2.5 kJ.mol-1, was measured by means of combustion calorimetry. The molar enthalpy of vaporization of 1-butyl-3-methylimidazolium dicyanamide, 157.2 +/- 1.1 kJ.mol-1, was obtained from the temperature dependence of the vapor pressure measured using the transpiration method. The latter method has been checked with measurements of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, where data are available from the effusion technique. The first experimental determination of the gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide, 363.4 +/- 2.7 kJ.mol-1, from thermochemical measurements (combustion and transpiration) is presented. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for 1-butyl-3-methylimidazolium dicyanamide using the G3MP2 theory. Excellent agreement with experimental results has been observed. The method developed opens a new way to obtain thermodynamic properties of ionic liquids which have not been available so far.  相似文献   

6.
The knowledge of thermochemical parameters such as the enthalpy of formation, gas-phase basicity, and proton affinity may be the key to understanding molecular reactivity. The obtention of these thermochemical parameters by theoretical chemical models may be advantageous when experimental measurements are difficult to accomplish. The development of ab initio composite models represents a major advance in the obtention of these thermochemical parameters, but these methods do not always lead to accurate values. Aiming at achieving a comparison between the ab initio models and the hybrid models based on the density functional theory (DFT), we have studied gamma-butyrolactone and 2-pyrrolidinone with a goal of obtaining high-quality thermochemical parameters using the composite chemical models G2, G2MP2, MP2, G3, CBS-Q, CBS-4, and CBS-QB3; the DFT methods B3LYP, B3P86, PW91PW91, mPW1PW, and B98; and the basis sets 6-31G(d), 6-31+G(d), 6-31G(d,p), 6-31+G(d,p), 6-31++G(d,p), 6-311G(d), 6-311+G(d), 6-311G(d,p), 6-311+G(d,p), 6-311++G(d,p), aug-cc-pVDZ, and aug-cc-pVTZ. Values obtained for the enthalpies of formation, proton affinity, and gas-phase basicity of the two target molecules were compared to the experimental data reported in the literature. The best results were achieved with the use of DFT models, and the B3LYP method led to the most accurate data.  相似文献   

7.
An accurate thermochemical database for 28 halides of carbon, silicon, nitrogen, and phosphorus is presented. The database provides improved standard enthalpies of formation for several compounds of ecological importance (CH3F, CF2Cl2, CFCl3) together with enthalpies of other compounds which are not known due to experimental difficulties in measuring their enthalpies. We also present a comparison of the latest ab initio methods (CBS-QB3 and G3) which are used for thermochemical predictions. The comparison shows that the G3 method consistently underestimates delta H degree f by 1-2 kJ/mol (relative to CBS-QB3).  相似文献   

8.
Computational studies on three tautomeric forms of four 1,5,6,7-tetrahydro- 4H-indazol-4-one derivatives: 1,5,6,7-tetrahydro-4H-indazol-4-one (1), 6,6-dimethyl- 1,5,6,7-tetrahydro-4H-indazol-4-one (2), 3-methyl-1,5,6,7-tetrahydro-4H-indazol-4-one (3) and 3,6,6-trimethyl-1,5,6,7-tetrahydro-4H-indazol-4-one (4), have been performed at different levels, ranging from semiempirical AM1, ab initio Hartree-Fock HF/6-31G* and HF/6-31G** to B3LYP/6-31G** density functional calculations. These calculations have been used to establish the most stable tautomer, which in all cases was in agreement with the experimental data.  相似文献   

9.
We have performed high level ab initio quantum chemical calculations for 2- and 3-pyrrolidinone; tetrahydro-2- and -3-furanone; 2-, 3-, and 4-piperidinone; and tetrahydro-2-, -3-, and -4-pyranone. The most stable molecular structures were obtained from DFT calculations using the B3LYP density functional and the 6-31G(d) and 6-311+G(3df,2p) basis sets. The respective enthalpies of formation have been computed by the G3(MP2)//B3LYP composite method and appropriately chosen reactions. The calculated results are in excellent agreement with experimental data reported in the literature.  相似文献   

10.
Molar enthalpies of sublimation of 2-chloro-, 3-chloro-, and 4-chlorobenzoic acids were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. Thermochemical investigations of chlorobenzoic acids available in the literature were collected and combined with own experimental results to obtain their reliable standard molar enthalpies of formation at T = 298.15 K in the gaseous state. Ab initio calculations of chlorobenzoic acids have been performed using the G3(MP2) theory, and results from the homodesmic reactions are in excellent agreement with experiment. New results help us to resolve the uncertainty in the available thermochemical data on chlorobenzoic acids. The strain enthalpies of chlorobenzoic acids have been assessed using an isodesmic reaction procedure.  相似文献   

11.
Various highly accurate ab initio composite methods of Gaussian-n (G1, G2, G3), their variations (G2(MP2), G3(MP2), G3//B3LYP, G3(MP2)//B3LYP), and complete basis set (CBS-Q, CBS-Q//B3LYP) series of models were applied to compute reaction enthalpies of the ground-state reaction of CO2 with Mg. All model chemistries predict highly endothermic reactions, with DeltaH(298) = 63.6-69.7 kcal x mol(-1). The difference between the calculated reaction enthalpies and the experimental value, evaluated with recommended experimental standard enthalpies of formation for products and reactants, is more than 20 kcal x mol(-1) for all methods. This difference originates in the incorrect experimental enthalpy of formation of gaseous MgO given in thermochemical databases. When the theoretical formation enthalpy for MgO calculated by a particular method is used, the deviation is reduced to 1.3 kcal x mol(-1). The performance of the methodologies used to calculate the heat of this particular reaction and the enthalpy of formation of MgO are discussed.  相似文献   

12.
The molar enthalpies of vaporization of 2-amino-, 3-amino-, and 4-aminotoluenes were obtained from the temperature dependence of the vapor pressure measured by the transpiration method. The molar enthalpy of sublimation of 4-aminotoluene was measured in the same way. The standard (p(o) = 0.1 MPa) molar enthalpy of formation delta fH(o)m(cr) at the temperature T = 298.15 K of crystalline 4-aminotoluene was measured using combustion calorimetry. The thermochemical investigations of aminotoluenes available in the literature were collected and combined with our own experimental results to obtain our own reliable standard molar enthalpies of formation at T = 298.15 K in the gaseous state. Ab initio calculations of aminotoluenes have been performed using the MP2Full/6-31G(d) and G3(MP2) basis sets, and the results from the bond separation method are in excellent agreement with the experiment. These new results help to resolve the uncertainty in the available thermochemical data on aminotoluenes. Weak mutual interactions of substituents in aminotoluenes have been realized using an isodesmic reaction procedure.  相似文献   

13.
The vibrational spectra of the binary complexes formed by HONO-trans and HONO-cis with dimethyl and diethyl ethers have been investigated using ab initio calculations at the SCF and MP2 levels with 6-311++G(d,p) basis set and B3LYP calculations with 6-31G(d,p) and 6-31+G(d,p) basis sets. Full geometry optimisation was made for the complexes studied. The accuracy of the ab initio calculations have been estimated by comparison between the predicted values of the vibrational characteristics (vibrational frequencies and infrared intensities) and the available experimental data. It was established, that the methods, used in this study are well adapted to the problem under examination. The predicted values with the B3LYP calculations are very near to the results, obtained with 6-311++G(d,p)/MP2. The ab initio and DFT calculations show that the changes in the vibrational characteristics (vibrational frequencies and infrared intensities) upon hydrogen bonding for the hydrogen-bonded complex (CH3)2O...HONO-trans are larger than for the complex (CH3)2O...HONO-cis.  相似文献   

14.
Enthalpies of formation of F2SO, F2SO2, FClSO and FClSO2 molecules have been determined using ab initio molecular orbital theory and density functional theory (DFT) calculations. Different DFT approaches and levels of the Gaussian-3 and the complete basis set (CBS) ab initio model chemistries have been employed to calculate enthalpies of formation from both total atomization energies and isodesmic reaction schemes. The best values at 298 K for F2SO, F2SO2, FClSO and FClSO2 as derived from an average of G3, G3B3, CBS-Q and CBS-QB3 isodesmic energies are −140.6, −181.1, −92.6 and −132.3 kcal mol−1, respectively. The results obtained suggest that the accumulated small component errors found in the DFT-based methods are significantly reduced at the ab initio levels employed. Structural properties, harmonic vibrational frequencies, mode assignations and infrared intensities derived from B3LYP and mPW1PW91 functional with the 6-311+G(3df) basis set are presented.  相似文献   

15.
In this work, the molar enthalpies of formation of the ionic liquids [C2MIM][NO3] and [C4MIM][NO3] were measured by means of combustion calorimetry. The molar enthalpy of fusion of [C2MIM][NO3] was measured using differential scanning calorimetry. Ab initio calculations of the enthalpy of formation in the gaseous phase have been performed for the ionic species using the G3MP2 theory. We have used a combination of traditional combustion calorimetry with modern high-level ab initio calculations in order to obtain the molar enthalpies of vaporization of a series of the ionic liquids under study.  相似文献   

16.
Thermodynamic properties of 3- and 4-phenoxyphenol have been determined by using a combination of calorimetric and effusion techniques as well as by high-level ab initio molecular orbital calculations. The standard (p° = 0.1 MPa) molar enthalpies of formation in the condensed and gas states, Δ(f)H(m)°(cr or l) and Δ(f)H(m)°(g), at T = 298.15 K, of 3- and 4-phenoxyphenol were derived from their energies of combustion in oxygen, measured by a static bomb calorimeter, and from the enthalpies of vaporization or sublimation derived respectively by Calvet microcalorimetry for the 3-phenoxyphenol and by Knudsen effusion technique for the 4-phenoxyphenol. The theoretically estimated gas-phase enthalpies of formation were calculated from high-level ab initio molecular orbital calculations at the G3(MP2)//B3LYP level of theory. Furthermore, this composite approach was also used to obtain information about the gas-phase acidities, gas-phase basicities, proton and electron affinities, adiabatic ionization enthalpies, and, finally, O?H bond dissociation enthalpies. The good agreement between the G3MP2B3-derived values and the experimental gas-phase enthalpies of formation for the 3- and 4-phenoxyphenol gives confidence to the estimate concerning the 2-phenoxyphenol isomer, which was not experimentally studied, and to the estimates concerning the radical and the anion. Additionally, the experimental values of gas-phase enthalpies of formation were also compared with estimates based on the empirical scheme developed by Cox.  相似文献   

17.
The chemical equilibrium of mutual interconversions of tert-butylbenzenes was studied in the temperature range 286 to 423 K using chloroaluminate ionic liquids as a catalyst. Enthalpies of five reactions of isomerization and transalkylation of tert-butylbenzenes were obtained from temperature dependences of the corresponding equilibrium constants in the liquid phase. Molar enthalpies of vaporization of methyl-tert-butylbenzenes and 1,4-di tert-butylbenzene were obtained by the transpiration method and were used for a recalculation of enthalpies of reactions and equilibrium constants into the gaseous phase. Using these experimental results, ab initio methods (B3LYP and G3MP2) have been tested for prediction thermodynamic functions of the five reactions under study successfully. Thermochemical investigations of tert-butylbenzenes available in the literature combined with experimental results have helped to resolve contradictions in the available thermochemical data for tert-butylbenzene and to recommend consistent and reliable enthalpies of formation for this compound in the liquid and the gaseous state.  相似文献   

18.
Low-energy ion-surface collisions of methyl cation at hydrocarbon and fluorocarbon self-assembled monolayer (SAM) surfaces produce extensive neutralization of CH3+. These experimental observations are reported together with the results obtained for ion-surface collisions with the molecular ions of benzene, styrene, 3-fluorobenzonitrile, 1,3,5-triazine, and ammonia on the same surfaces. For comparison, low-energy gas-phase collisions of CD3+ and 3-fluorobenzonitrile molecular ions with neutral n-butane reagent gas were conducted in a triple quadrupole (QQQ) instrument. Relevant MP2 6-31G*//MP2 6-31G* ab initio and thermochemical calculations provide further insight in the neutralization mechanisms of methyl cation. The data suggest that neutralization of methyl cation with hydrocarbon and fluorocarbon SAMs occurs by concerted chemical reactions, i.e., that neutralization of the projectile occurs not only by a direct electron transfer from the surface but also by formation of a neutral molecule. The calculations indicate that the following products can be formed by exothermic processes and without appreciable activation energy: CH4 (formal hydride ion addition) and C2H6 (formal methyl anion addition) from a hydrocarbon surface and CH3F (formal fluoride addition) from a fluorocarbon surface. The results also demonstrate that, in some cases, simple thermochemical calculations cannot be used to predict the energy profiles because relatively large activation energies can be associated with exothermic reactions, as was found for the formation of CH3CF3 (formal addition of trifluoromethyl anion).  相似文献   

19.
由于碱基在核酸中的重要性 ,多年来一直有关于碱基的理论计算报道[1~ 7] 。本文将化学计量学中的主成分分析方法[8] 用来分析五种碱基 :腺嘌呤 (A)、鸟嘌呤 (G)、胞嘧啶 (C)、尿嘧啶 (U)和胸腺嘧啶 (T)计算结果的几何参数 ,以期取得有用的结构信息。1 方法通过ACD ChemSketch 3 .5 [9] 的三维优化 (分子力学方法CHARMM力场 )获得碱基的起始几何结构 ,其原子编号见图 1。所有的计算均采用Gaussian 94程序[10 ] 在IBM PC兼容机上完成。首先 ,对 5种碱基作了 6种半经验方法 (AM1、PM3、MNDO、…  相似文献   

20.
Optimized geometries and total energies of some conformers of alpha- and beta-D-galactose have been calculated using the RHF/6-31G* ab initio method. Vibrational frequencies were computed at the 6-31G* level for the conformers that favor internal hydrogen bonding, in order to evaluate their enthalpies, entropies, Gibbs free energies, and then their structural stabilities. The semiempirical AM1, PM3, MNDO methods have also been performed on the conformers GG, GT, and TG of alpha- and beta-D-galactose. In order to test the reliability of each semiempirical method, the obtained structures and energies from the AM1, PM3, and MNDO methods have been compared to those achieved using the RHF/6-31G* ab initio method. The MNDO method has not been investigated further, because of the large deviation in the structural parameters compared with those obtained by the ab initio method for the galactose. The semiempirical method that has yielded the best results is AM1, and it has been chosen to perform structural and energy calculations on the galabiose molecule (the disaccharides constituted by two galactose units alpha 1,4 linked). The goal of such calculations is to draw the energy surface maps for this disaccharide. To realize each map, 144 different possible conformations resulting from the rotations of the two torsional angles psi and phi of the glycosidic linkage are considered. In each calculation, at each increment of psi and phi, using a step of 30 degrees from 0 to 330 degrees, the energy optimization is employed. In this article, we report also calculations concerning the galabiose molecule using different ab initio levels such as RHF/6-31G*, RHF/6-31G**, and B3Lyp/6-31G*.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号