首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Zerovalent iron (nZVI) nanoparticles have long been used in the electronic and chemical industries due to their magnetic and catalytic properties. Increasingly, applications of nZVI have also been reported in environmental engineering because of their ability to degrade a wide variety of toxic pollutants in soil and water. It is generally assumed that nZVI has a core-shell morphology with zerovalent iron as the core and iron oxide/hydroxide in the shell. This study presents a detailed characterization of the nZVI shell thickness using three independent methods. High-resolution transmission electron microscopy analysis provides direct evidence of the core-shell structure and indicates that the shell thickness of fresh nZVI was predominantly in the range of 2-4 nm. The shell thickness was also determined from high-resolution X-ray photoelectron spectroscopy (HR-XPS) analysis through comparison of the relative integrated intensities of metallic and oxidized iron with a geometric correction applied to account for the curved overlayer. The XPS analysis yielded an average shell thickness in the range of 2.3-2.8 nm. Finally, complete oxidation reaction of the nZVI particles by Cu(II) was used as an indication of the zerovalent iron content of the particles, and these observations further correlate the chemical reactivity of the particles and their shell thicknesses. The three methods yielded remarkably similar results, providing a reliable determination of the shell thickness, which fills an essential gap in our knowledge about the nZVI structure. The methods presented in this work can also be applied to the study of the aging process of nZVI and may also prove useful for the measurement and characterization of other metallic nanoparticles.  相似文献   

2.
Yang  Yuhui  Xu  Pengjun  Chen  Jun  Zhang  Ruquan  Huang  Jingjing  Xu  Weilin  Xiao  Shili 《Cellulose (London, England)》2021,28(12):7925-7940

Nanoscale zero-valent iron (nZVI) particles have been frequently used to treat pollutants as an excellent reactive nanomaterial in last two decades. However, loading nZVI particles on the substrate with large surface area, easy handling and in particular, production on a large scale is still a problem. Herein, a facile approach was developed for in-situ preparation of nanoscale zero-valent iron (nZVI) particles on cotton fibers at room temperature. The cotton fabric was firstly oxidized to generate carboxylic groups for complexing ferric ions. Then, nZVI particles were immobilized on cotton fabric by reducing agent sodium borohydride. The nZVI immobilized cotton fabric (nZVI@cotton fabric) was thoroughly characterized and could decolorize more than 96% methylene blue and brilliant green within 40 min, respectively. The sorption isotherm study revealed that the reactive sorption of methylene blue on nZVI@cotton fabric fits the Freundlich model. The degradation intermediates of methylene blue were identified by HPLC/MS and possible degradation pathway was proposed. The method of immobilizing nZVI particles on carboxylated cotton fibers may be promising to prepare fibrous, easy handling reactive compounds for environmental remediation.

  相似文献   

3.
The adsorption of methylene blue (MB) dye from aqueous solution onto a cashew nut shell (CNS) was investigated as a function of parameters such as solution pH, CNS dose, contact time, initial MB dye concentration and temperature. The CNS was shown to be effective for the quantitative removal of MB dye, and the equilibrium was reached in 60 min. The experimental data were analysed by two-parameter isotherms (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich models) using nonlinear regression analysis. The characteristic parameters for each isotherm and the related correlation coefficients were determined. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were also evaluated, the sorption process was found to be spontaneous and exothermic. Pseudo-first-order, pseudo-second-order and Elovich kinetic models were used to analyze the adsorption process. The results of the kinetic study suggest that the adsorption of MB dye matches the pseudo-second-order equation, suggesting that the adsorption process is presumably chemisorption. The adsorption process was found to be controlled by both surface and pore diffusion. Analysis of adsorption data using a Boyd kinetic plot confirmed that the external mass transfer is a rate determining step in the sorption process. A single-stage batch adsorber was designed for different CNS doses to effluent volume ratios using the Freundlich equation. The results indicated that the CNS could be used effectively to adsorb MB dye from aqueous solutions.  相似文献   

4.
5.
The present work was mainly focused on the single and binary adsorption of methylene blue(MB) and methyl orange(MO) from alcohol aqueous solution over rice husk based activated carbon(RHAC). The study of single dye adsorption equilibrium experiments found that the Langmuir adsorption model was consistent with the adsorption behavior of RHAC on MB and MO, indicating that it was a single layer adsorption. The adsorption behavior conformed to the pseudo-second-order kinetic model. The binary dye adsorption experiments showed that the Langmuir-Freundlich model could be applied to describe the adsorption behavior of RHAC on MB and MO. Comparation with the single dye system, the adsorption capacity on the binary dye system was larger, and there was "competitive adsorption" and "synergistic adsorption" effects existed. Meanwhile, the pseudo-second-order kinetic model also fit for the binary dye adsorption behavior.  相似文献   

6.
Zero-valent iron (ZVI) nanoparticles tend to agglomerate, resulting in a significant loss in reactivity. To address this issue, synthesized bentonite-supported nanoscale zero-valent iron (B-nZVI) was used to remove azo dye methyl orange (MO) in aqueous solution. Batch experiments show that various parameters, such as pH, initial concentration of MO, dosage, and temperature, were affected by the removal of MO. Scanning electron microscopy (SEM) confirmed that B-nZVI increased their reactivity and a decrease occurred in the aggregation of iron nanoparticles for the presence of bentonite (B). Using B-nZVI, 79.46% of MO was removed, whereas only 40.03% when using nZVI after reacting for 10 min with an initial MO concentration of 100 mg/L (pH=6.5). Furthermore, after B-nZVI reacted to MO, XRD indicated that iron oxides were formed. FTIR showed that no new bands appeared, and UV-vis demonstrated that the absorption peak of MO was degraded. Kinetics studies showed that the degradation of MO fitted well to the pseudo first-order model. A degradation mechanism is proposed, including the following: oxidation of iron, adsorption of MO to B-nZVI, formation of Fe(II)-dye complex, and cleavage of azo bond. Finally, the removal rate of MO from actual wastewater was 99.75% when utilizing B-nZVI.  相似文献   

7.
Huang ST  Shi Y  Li NB  Luo HQ 《The Analyst》2012,137(11):2593-2599
We report on a fast, sensitive, label-free, and general dye-sensor platform for synthetic organic dyes detection by competitive adsorption on reduced graphene oxide (rGO) against a fluorescent dye (FD). Fluorescein (Fl) as fluorescence indicator and a cationic dye methylene blue (MB) as model analyte were employed to investigate the analytical feature of this assay platform. An anionic dye sunset yellow FCF (SY) was chosen as a comparison analyte to test the generality of this strategy. Results show that rGO can bind Fl and quench the fluorescence by fluorescence resonance energy transfer (FRET), while MB can displace Fl quickly from the Fl/rGO complex by competitive adsorption, inducing the fluorescence recovery which provides a quantitative readout for MB. Besides, this design was simply based on the competitive adsorption of rGO between dye and FD, and can be generally applied to other dyes for label-free detection. The fluorescence enhancement efficiency (FEE) is proportional to the dye concentration over the range of 7.60-420.00 ng mL(-1) MB and 7.28-400.25 ng mL(-1) SY, respectively. The linear regression equations were calculated as FEE(MB) = 0.0192c(MB)- 0.3103 for MB and FEE(SY) = 0.0142 c(SY)- 0.0427 for SY, with the detection limits of 1.03 and 1.15 ng mL(-1), respectively. The MB in waste water and SY in an orange-flavored sports drink sample were assayed with satisfactory results.  相似文献   

8.
Pollution caused by organic dyes is of serious environmental and health concern to the population. Dyes are widely used in textile coloring applications. In the present work, cotton textile was coated with a conducting polymer, polypyrrole (PPy), in situ during the oxidative polymerization of pyrrole. The resulting materials were utilized as easily separated and recyclable adsorbent for the removal of methylene blue (MB) as a model of cationic dyes in alkaline solutions. It showed also some affinity to remove Acid Green 25 as an anionic dye in acidic medium. The adsorption was assessed by monitoring the decrease in dye concentration by UV–Visible absorption spectroscopy. The influence of various parameters such as initial dye concentration, contact time, pH, temperature, and adsorbent dose on the adsorption process was studied. The pseudo-second-order kinetic model and Freundlich isotherm model were found to describe the adsorption process. The thermodynamic study revealed that the adsorption of MB by PPy was feasible, spontaneous, and exothermic process. Investigation of the substrate regeneration revealed that PPy deposited on cotton textile can be reused for dye adsorption several times with good efficiency and it allows for the recovery of MB for recycling purposes.  相似文献   

9.
The adsorption of a basic dye (Methylene Blue; MB) and an acidic dye (Acid Orange; AO) has been studied on three activated carbons (ACs; FAS, SKD, and BAU) significantly differing in their porous structures and surface concentrations of ion-exchange groups and on graphitic thermal carbon black (GTCB). The effective specific surface area of FAS, SKD, and BAU determined by dye adsorption is, respectively, 60, 50, and 40% of the BET nitrogen adsorption surface area. The MB uptake on ACs and GTCB increases with rising pH, while the AO uptake decreases. Addition of an electrolyte (0.3 M NaCl) virtually does not effect the adsorption of dyes on ACs and GTCB. It is suggested that hydrophobic interactions, and not ionic ones, are the major contributors to the adsorption of dyes on ACs.  相似文献   

10.
Nanomaterials play a significant role in adsorption treatment of dye wastewater, but irreversible aggregation of nanoparticles poses a significant problem. In this work, nanomesoporous zinc-doped silicate (NMSZ) was prepared by an in situ method. To prevent agglomeration, NMSZ was covalently bonded to graphene oxide (GO) sheets to form a nano-silica/zinc/graphene oxide composite (GO-NMSZ), aimed at removal of cationic dye methylene blue (MB). For comparison, undoped mesoporous silica (MS) was also synthesized and modified to obtain a silica/graphene oxide composite (GO-MS). The materials were characterized by powder XRD, SEM, FTIR spectroscopy, TEM, nitrogen sorption, and X-ray photoelectron spectroscopy (XPS). Preservation of the oxygen-containing groups of GO in the composites led to higher adsorption capacities. The best GO-NMSZ composite exhibited an enhanced adsorption capacity of 100.4 mg g−1 for MB compared to those of undoped GO-MS (80.1 mg g−1) and nongrafted NMSZ (55.7 mg g−1). The nonselective character of GO-NMSZ is demonstrated by effective adsorption of anionic dye Congo red (127.4 mg g−1) and neutral dye isatin (289.0 mg g−1). The adsorption kinetics, adsorption isotherms, and a thermodynamic study suggested that MB adsorption occurs by chemisorption and is endothermic in nature.  相似文献   

11.
Adsorption of reactive dyes on titania-silica mesoporous materials   总被引:5,自引:0,他引:5  
This paper presents a study on the adsorption of two basic dyes, methylene blue (MB) and rhodamine B (RhB), from aqueous solution onto mesoporous silica-titania materials. The effect of dye structure, adsorbent particle size, TiO(2) presence, and temperature on adsorption was investigated. Adsorption data obtained at different solution temperatures (25, 35, and 45 degrees C) revealed an irreversible adsorption that decreased with the increment of T. The presence of TiO(2) augmented the adsorption capacity (q(e)). This would be due to possible degradation of the dye molecule in contact with the TiO(2) particles in the adsorbent interior. The adsorption enthalpy was relatively high, indicating that interaction between the sorbent and the adsorbate molecules was not only physical but chemical. Both Langmuir and Freundlich isotherm equations were applied to the experimental data. The obtained parameters and correlation coefficients showed that the adsorption of the two reactive dyes (MB and RhB) on the adsorbent systems at the three work temperatures was best predicted by the Langmuir isotherm, but not in all cases. The kinetic adsorption data were processed by the application of two simplified kinetic models, first and second order, to investigate the adsorption mechanism. It was found that the adsorption kinetics of methylene blue and rhodamine B onto the mesoporous silica-titania materials surface under different operating conditions was best described by the first-order model.  相似文献   

12.
In present study, we have investigated the effect of an anionic surfactant sodium dodecyl sulfate (SDS) and clay on calcium alginate beads was studied to remove methylene blue (MB) and to improve the adsorption capacity. The effects of various experimental parameters, such as shaking rate, initial dye concentration, temperature, and pH on the adsorption rate, have been studied. Equilibrium studies showed that the sorption of the dye was enhanced in presence of SDS. Scanning electron microscope (SEM) analysis showed that SDS entrapped beads have more pores and cavities which could be responsible for improved adsorption of MB. The kinetics of cationic dye adsorption nicely followed pseudo-second-order process. The evaluated thermodynamic parameters (ΔG o, ΔH o, ΔS o) suggest endothermic adsorption of MB. The results revealed that the surfactant entrapped alginate could be considered as potential adsorbents for MB removal from aqueous solutions.  相似文献   

13.
The removal of cationic dyes, methylene blue(MB) and rhodamine B(RB), and anionic dyes, methyl or-ange(MO) and eosin Y(EY), from aqueous solutions by adsorption using Cu2Se nanoparticles(Cu2SeNPs) was studied. The effects of the initial pH values, adsorbent doses, contact time, initial dye concentrations, salt concentrations, and operation temperatures on the adsorption capacities were investigated. The adsorption process was better fitted the Langmuir equation and pseudo-second-order kinetic model, and was spontaneous and endothermic as well. The adsorption mechanism was probably based on the electrostatic interactions and π-π interactions between Cu2SeNPs and dyes. For an adsorbent of 0.4 g/L of Cu2SeNPs, the adsorption capacities of 23.1(MB), 22.9(RB) and 23.9(EY) mg/g were achieved, respectively, with an initial dye concentration of 10 mg/g(pH=8 for MB and pH=4 for RB and EY) and a contact time of 120 min. The removal rate of MB was still 70.4% for Cu2SeNPs being reused in the 5th cycle. Furthermore, the recycled Cu2SeNPs produced from selenium nanoparticles adsorbing copper were also an effective adsorbent for the removal of dyes. Cu2SeNPs showed great potential as a new adsorbent for dyes removal due to its good stability, functionalization and reusability.  相似文献   

14.
Cheap and efficient adsorbents to remove contaminants of toxic dye molecules from wastewater are strongly in demand for environmental reasons. This study provides a novel design of a monolithic adsorbent from abundant materials via a facile synthetic procedure, which can greatly reduce the problems of the tedious separation of adsorbents from treated wastes. A hierarchically porous cellulose/activated carbon (cellulose/AC) composite monolith was prepared by thermally-induced phase separation of cellulose acetate in the presence of AC, using a mixture of DMF and 1-hexanol, followed by alkaline hydrolysis. The composite monolith had alarge specific surface area with mesopore distribution. It not only showed high uptake capacity towards methylene blue (MB) or rhodamine B (RhB) but could also simultaneously adsorb MB and RhB from their mixture, in which the adsorption of one dye was not influenced by the other one. Remarkable effects of solution pH, initial concentration of dye (C 0), contact time, adsorbent dosage and temperature on the adsorption of MB and RhB onto the composite monolith were demonstrated. The binding data for MB and RhB adsorption on the composite monolith fitted the Freundlich model well, suggesting a heterogeneous surface of the composite monolith. The monolith could retain around 90% of its adsorption capacity after 8 times reuse. These data demonstrate that the cellulose/AC composite monolith has a large potential as a promising adsorbent of low cost and convenient separation for dye in wastewater.  相似文献   

15.
Abstract

In this study the effect of the dose and particle size of the adsorbent, initial dye concentration, initial pH, contact time and temperature were investigated for the removal of by means of fly ash (FA) methylene blue (MB) from an aqueous solution. The FA dose was found to be 2.0?g and the under 270 mesh sized particles were found to be effective particles for adsorption. The adsorption process reached its maximum value at 0.5?mg/L dye concentration and attained equilibrium within 10?minutes. The adsorption isotherm was found to follow the Langmuir model. The estimated adsorption free energy (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) for the adsorption process were ?37.77?kJ mol?1, ?13.44?kJ mol?1 and 122 J mol?1 K?1 respectively at 298 K. The maximum adsorption capacity is 0,12?mg g?1 at 298 K and 0,07?mg g?1 at 398 K. The adsorption process was exothermic, feasible and spontaneous. The positive value of ΔSo shows the affinity of FA for MB while the low value of ΔGo suggests a physical adsorption process.  相似文献   

16.
The growth in textile and printing industries proven detrimental to the aquatic environment as the industrial waste containing dye seeped into the ecosystem. A high concentration of dye in water possess negative impacts on water ecosystem and harmful to human health. Removal of methylene blue (MB) dye from industrial waste via adsorption pathway has been widely investigated that promised high efficiency of MB removal. This review will summarize researches published from 2008 to 2019 on the removal of MB using carbon adsorbent with focus will be given on the synthesis and modification of carbon-based materials, and the structural properties influencing the performance of MB adsorption. Summary on the type of material used for the synthesis of carbon materials (activated carbon and biochar) will be included from utilization of the naturally occurring carbon sources such as polymers, biomasses and biowastes, and also sucrose and hydrocarbon gases. Modification of carbon materials such as chemical activation and physical activation; surface grafting to form functionalized surfaces; deposition with metal and magnetic nanoparticles via impregnation; and manufacturing of carbon composites will be discussed on the effects to promote MB adsorption and desorption. Another type of carbon adsorbents such as porous carbon; graphitic carbons including graphite, graphene, graphene oxide, and carbon nitride (g-C3N4); and finally nanocarbon in the form of nanotube, nanorod and nanofiber; will be included in the review with details on the synthesis method and the correlation between structural properties and adsorption activity. The regeneration process to increase the life cycle of carbon adsorbent will also be discussed based on two regeneration pathway i.e. a thermal degradation and desorption on MB. Finally the thermodynamics, kinetics, and the adsorption models of MB on carbon adsorbent will be discussed in this review.  相似文献   

17.
通过水热法在室温下合成了不同铜含量的介孔SiO2微球(Cu-MSM)。目的在于研究吸附剂量、MB的初始浓度以及吸附时间对Cu-MSM从溶液中移除亚甲基蓝(MB)吸附性能的影响。结果表明,当增加Cu-MSM的量时,MB的去除率会大大提高;掺杂铜的介孔SiO2微球可以通过吸附去除水溶液中的亚甲蓝。最后,简要探讨了亚甲基蓝的吸附机理。  相似文献   

18.
徐惠  唐进  李春雷  陈泳 《应用化学》2016,33(1):92-97
以聚苯胺/凹凸棒石(PANI/ATP)为载体,采用液相还原法合成了负载型纳米零价铁(nZVI),用扫描电子显微镜(SEM)、透射电子显微镜(TEM)及X射线光电子能谱分析仪(XPS)等技术手段对纳米复合材料进行表征,考察了反应时间和pH值对甲基橙降解性能的影响,对降解过程进行了动力学分析,探讨了nZVI/PANI/ATP复合材料对甲基橙的降解机理。 结果表明,nZVI/PANI/ATP复合材料在较大pH值范围内能有效降解水中甲基橙并具有降解长效性,当催化剂用量1.0 g/L,降解体积50 mL,甲基橙的浓度20 mg/L,降解时间30 min时,复合材料对甲基橙的降解率达到95.8%以上,对甲基橙的降解过程符合准二级动力学模型。  相似文献   

19.
Surface-fluorinated TiO2 (F-TiO2) particles were prepared via the HF etching method. The surface characteristics of fluorinated TiO2, the adsorption modes of dyes, and the reaction pathways for the photocatalytic degradation of dye pollutants under visible light irradiation were investigated. It was found that, in the treatment of TiO2 by HF etching, F(-) not only displaces surface HO(-) but also substitutes some surface lattice oxygen. Using zwitterionic Rhodamine B (RhB) dye as a model, the change of the adsorption mode of RhB on F-TiO2 relative to that on pure TiO2 was validated by adsorption isotherms, X-ray photoelectron spectroscopy (XPS), and IR techniques for the first time. RhB preferentially anchors on pure TiO2 through the carboxylic (-COOH) group, while its adsorption group is switched to the cationic moiety (-NEt 2 group) on F-TiO2. Both the photocatalytic degradation kinetics and mechanisms were drastically changed after surface fluorination. Dyes with positively charged nitrogen-alkyl groups such as methylene blue (MB), malachite green (MG), Rhodamine 6G (Rh6G), and RhB all underwent a rapid N-dealkylation process on F-TiO2, while on pure TiO2 direct cleavage of dye chromophore ring structures predominated. The relationship between surface fluorination and the degradation rate/pathway of dyes under visible irradiation was also discussed in terms of the effect of fluorination on the surface adsorption of dyes and on the energy band structure of TiO2.  相似文献   

20.
《印度化学会志》2023,100(4):100974
Removal of Methylene Blue (MB) dye using Litchi Leaves Powder (LLP) material was carried out in batch mode. Effect of the mass of the adsorbent (0.1–2.5 g/L), pH of the solution (2−12), starting concentration of MB dye (50–150 mg/L), ionic strength using NaCl (0.1–0.5 M) as an electrolyte, contact time (0–60 min) on the adsorption of MB dye was studied. To calculate pH at which LLP material surface becomes neutral point of zero charge (pHpzc) is also determined and found to be 6.48. Removal process best fit in the pseudo-second-order kinetic model as indicated by its higher R2 value (0.999). Isotherm models (Freundlich and Langmuir) were fitted to the data obtained from the experiment to understand the adsorption behaviour. Result shows that experimental data were fitted to the both isotherm models (Freundlich and Langmuir) as indicated by higher R2 value for both Freundlich (0.991) and Langmuir (0.994) model, and it was determined that LLP has a maximum adsorption capacity of 119.76 mg/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号