首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
《印度化学会志》2021,98(9):100121
A novel heterocyclic compound 2-(Furan-2-yl)-4,5-Diphenyl-1H-Imidazole (FDPI) was synthesized by a simple and cost effective one pot synthetic protocol and the structure of FDPI was confirmed by FT-IR, 1H NMR and 13C NMR spectra. The corrosion inhibition activity of FDPI was investigated using gravimetric and electrochemical methods. It resulted a maximum inhibition efficiency of 95.84% at 10 mmolL−1 concentrations of FDPI. The excellent inhibition efficiency is reasoned as the adsorption of FDPI on the mild steel surface as a protective layer immersed in the 1 ​M HCl. The adsorbed layer obeys Langmuir adsorption isotherm and the ΔGoads values of FDPI suggested that process involves physisorption. The polarization curves showed that the FDPI behaves as a mixed type inhibitor. Surface morphology studied by SEM confirmed the formation of a protective film of FDPI on the mild steel surface. The computational studies using DFT have been analyzed for the FDPI to determine the HOMO-LUMO energy gap.  相似文献   

4.
2-Allyl-p-mentha-6,8-dien-2-ols P1P3 synthesized from carvone P are tested as corrosion inhibitors of steel in 1 M HCl using weight loss measurements, potentiodynamic polarisation and impedance spectroscopy (EIS) methods. The addition of 2-allyl-p-mentha-6,8-dien-2-ols reduced the corrosion rate. Potentiodynamic polarisation studies clearly reveal that the presence of inhibitors does not change the mechanism of hydrogen evolution and that they act essentially as cathodic inhibitors. 2-Allyl-p-mentha-6,8-dien-2-ols tested adsorb on the steel surface according to Langmuir isotherm. From the adsorption isotherm some thermodynamic data for the adsorption process are calculated and discussed. EIS measurements show the increase of the charge-transfer resistance with the inhibitor concentration. The highest inhibition efficiency (92%) is obtained for P1 at 3 g/L. The corrosion rate decreases with the rise of temperature. The corresponding activation energies are determined.  相似文献   

5.
《Arabian Journal of Chemistry》2020,13(12):8684-8696
This report focuses on the application of a biodegradable biowaste [human hair-(HHR)], to produce a mild steel corrosion inhibitor. The performance of HHR extract in inhibiting metallic corrosion in 1 mol/L HCl was investigated. The analysis of the metal corrosion behavior using electrochemical and weight loss techniques revealed that HHR exhibits an efficient corrosion-mitigating effect via adsorption on the metal surface following a Langmuir isotherm. Tafel-plot results revealed the mixed-mode corrosion protection behavior of HHR. Surface analysis using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and Fourier transform infrared (FT-IR) spectroscopy provided evidence for the precipitation of a protective HHR film on the metal surface.  相似文献   

6.
The inhibition effect of sulfamethoxazole on mild steel corrosion in 1‐M hydrochloric acid solution is investigated by electrochemical and quantum chemical measurements. Electrochemical polarization studies show that sulfamethoxazole acts as a mixed‐type corrosion inhibitor. The adsorption of the inhibitor on mild steel in 1‐M hydrochloric acid system is studied at different temperatures (303‐333 K). The adsorption of sulfamethoxazole on mild steel surface is an exothermic process and obeys the Temkin adsorption isotherm. Based on the potential of zero charge values and quantum chemical parameters, the mechanism of adsorption is proposed.  相似文献   

7.
Electrochemical measurements were performed to investigate the effectiveness and adsorption behaviour of aminobiphenyl (Aph) and 2-(3-hydroxybenzylideneamino)biphenyl (Aph-S), as corrosion inhibitors for mild steel (MS) in 0.5 M HCl solution. Potentiodynamic polarization, linear polarization resistance (LP) and electrochemical impedance spectroscopy (EIS) techniques were applied to study the metal corrosion behaviour in the absence and presence of different concentrations of Aph and Aph-S. In order to gain more information about adsorption mechanism the AC impedance technique was used to evaluate the potential of zero charge (PZC) from polarization resistance (Rp) versus voltage (E) plot. Potentiodynamic polarization measurements showed that Aph act as cathodic type inhibitor where as Aph-S act mixed type. The inhibition efficiency (IE%) increases with increasing concentration of compounds and reached 92.6% for Aph and 97.2% for Aph-S at 5 × 10−3 M. Double layer capacitance (Cdl) and polarization resistance (Rp) values are derived from Nyquist plots obtained from AC impedance studies. The experimental data fit Langmuir isotherm for both Aph and Aph-S, and from the adsorption isotherm some thermodynamic data for the adsorption processes are calculated and discussed. The effect of exposure time on the corrosion behaviour of mild steel in the absence and presence of inhibitor over 168 h was also studied.  相似文献   

8.
《印度化学会志》2022,99(12):100701
In the present work, two new 8-hydroxyquinoline derivatives namely, 5-(((2-hydroxybenzylidene)amino)methyl) 8-hydroxyquinoline [HBMQ] and 5-(((4-chlorobenzylidene)amino)methyl) 8-hydroxyquinoline [CBMQ] were synthesized and investigated as corrosion inhibitors against the dissolution of carbon steel (C38 steel) in 1 M HCl. These compounds were obtained with high yield, and their structures were characterized by nuclear magnetic resonance spectroscopy (NMR) and elemental analysis. Gravimetric, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP), and surface morphology analyses utilizing scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) were used to quantify inhibitory performance. The adsorption process of inhibitory compounds was then demonstrated using quantum mechanics approaches such as Density Functional Theory (DFT) and Molecular Dynamic Simulation (MD). Based on EIS results, the investigated derivatives effectively inhibit the degradation of C38 steel over the entire concentration range with a maximum efficiency of 91.9% and 88.0% for [CBMQ] and [HBMQ], respectively, at 10?3 M. In addition, the PDP studies revealed that [HBMQ] and [CBMQ] compounds acted according to a mixed-type mechanism. Moreover, the adsorption mechanism follows the Langmuir isotherm model. The quantum theoretical study by DFT and MD simulation confirmed the experimental results.  相似文献   

9.
The effects of expired lansoprazole and rabeprazole on the corrosion protection of carbon steel in phosphoric acid (3.0 ?M) solution were examined by Tafel polarization and electrochemical impedance spectroscopy (EIS). Lansoprazole and rabeprazole concentrations (0.5, 1.0, 5.0 and 10 ?mM) in acid solution were raised, which improved corrosion prevention. Both lansoprazole and rabeprazole as the mixed inhibitors retarded the anodic and cathodic processes, as indicated by polarization data. With the increasing temperature in the range of 25–55 ?°C, the inhibition efficiency drops from 92.9% to 69.3% for lansoprazole and from 94.8% to 74.2% for rabeprazole. The major decrease in the inhibition efficiency with ascending temperature proved the physisorption of the drugs. The activation energies for carbon steel corrosion in H3PO4solution were enhanced from 41.6 ?kJ ?mol?1 to 81.9 ?kJ.mol?1and 85.9 ?kJ ?mol?1 for lansoprazole and rabeprazole, respectively. The influence of temperature on the corrosion process of carbon steel in the acid medium was used to derive the thermodynamic quantities of corrosion. The adsorption of both lansoprazole and rabeprazole on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes that were consistent with the results arising from impedance measurements. The theoretical study of both lansoprazole and rabeprazole was done by a density functional theory (DFT) approach to realize the effects of molecular structure on their inhibitive action. Both lansoprazole and rabeprazole contain a higher EHOMO, a lower ELUMO and a lower energy gap than some inhibitors earlier reported as good corrosion inhibitors in the literature.  相似文献   

10.
11.
Corrosion inhibition effect of 2-mercaptobenzothiazole (MBT) and 2-aminobenzothiazole (ABT) compounds on ST-37 carbon steel in 1 M hydrochloric acid solution was investigated by electrochemical impedance spectroscopy (EIS), and it was observed that both of these compounds have corrosion inhibition effect on carbon steel. Evaluation of electrochemical behavior in test solutions showed that by increasing the immersion time from 15 to 300 min, corrosion resistance of samples is increased and at the same immersion time MBT has a better corrosion inhibition in comparison to ABT. AFM technique was performed for MBT and ABT. The results of calculations showed superior inhibition efficiency of MBT in comparison to ABT. This can cause easier protonation and consequently adsorption on the metal surface occurs.  相似文献   

12.
The effects of expired bupropion on the corrosion protection of carbon steel in hydrochloric acid (1.0 M) and sulfuric acid (0.5 M) solutions were examined by Fourier transform infrared (FTIR) spectroscopy, Tafel polarization and electrochemical impedance spectroscopy (EIS). Bupropion concentrations in both acid solutions were raised, which improved corrosion prevention. Bupropion was a mixed inhibitor because it retarded the anodic and cathodic processes, as indicated by polarization data. The inhibition efficiency decreased with the increasing temperature from 25 to 55 °C. In the presence of bupropion, the activation energies of corrosion in both acid solutions increased. The thermodynamic quantities were deduced from the influence of temperature on the corrosion process of carbon steel in both acid media. Bupropion adsorption on carbon steel followed the Langmuir adsorption isotherm. The polarization data yielded outcomes consistent with the results arising from impedance measurements. FTIR spectroscopy showed the active sites of bupropion molecule during adsorption on the alloy surface. The theoretical study and molecular dynamics simulation of bupropion was done by a density functional theory (DFT) approach to realize the effects of molecular structure on the inhibitive action of bupropion.  相似文献   

13.
The inhibiting effect and mechanism of 1-cyclopropyl-6-fluoro-1,4-dihydro -4-oxo-7-(1-piperazinyl) -3- quinoline carboxylicacid(ciprofloxacin), 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin) and (?)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7- oxo-7 H-pyrido(1,2,3-de)-1,4- benzoxazine-6 carboxylic acid (ofloxacin) on the corrosion of mild steel in 1 mol/L HCl have been studied using electrochemical method, quantum chemical method and SEM at 303 K. The potentiodynamic results showed that these compounds suppressed both cathodic and an-odic processes of mild steel corrosion in 1 mol/L HCl. The impedance spectroscopy showed that Rp values increased, and Cdl values decreased with the rising of the working concentration. Quantum chemical calculation showed that there was a positive correlation between some inhibitors structure properties and the inhibitory efficiency. The inhibitors function through adsorption followed Langmuir isotherm, and chemisorption made more contribution to the adsorption of the inhibitors on the steel surface compared with physical adsorption. SEM analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors.  相似文献   

14.
《Arabian Journal of Chemistry》2020,13(10):7504-7523
The inhibition of (3ar,6ar)-3a,6a-di-p-tolyltetrahydroimidazo[4,5-d]imidazole-2,5(1 h,3h)-dithione (TTHIIDT) for carbon steel was full characterized in a 1 M hydrochloride acid environment at various inhibitor concentrations and temperatures by the gravimetric, electrochemical, surface and quantum chemical analyses. The obtained results confirmed that the inhibition efficiency of TTHIIDT was over 95–97% and nearly stable in the rise of temperature and concentration; TTHIIDT was mixed type inhibitor and effectively influenced both anodic and cathodic corrosion reactions; a protective hydrophobic thin layer of this inhibitor on the carbon steel surface is more stable and non soluble in 1 M HCl medium; this inhibitor adsorbed endothermically on the carbon steel surface by the chemical and physical adsorption processes. The quantum chemical calculations supported the experimental results and showed that the inhibition efficiency is depends on the structure of inhibitor.  相似文献   

15.
The extraction of Zea mays hairs (Z. mays) was carried out by soxhlet and ultrasound techniques and through three solvents. Phytochemical tests and quantitative analysis of total phenols content (TPC) and flavonoids content (FC) for all extracts were also determined. The antioxidant activity, for different fractions, was determined by using three methods; DPPH, FRAP and TAC. All extracts were rich in polyphenols and the analysis of TPC and FC showed that the hydro-ethanolic extract obtained by ultrasound was characterized by a significant amount of TPC and FC. The n-butanolic fraction was rich in FC and also had a very high antioxidant capacity. On the other hand, the inhibiting effect of hydro-ethanolic extract, n-butanolic fraction and standard (flavone) on mild steel corrosion in 1 M HCl solution was investigated by electrochemical measurements. The polarization curves along with EIS diagrams indicated that flavone was the major molecule responsible for inhibition and acted as mixed-type inhibitor with predominant control of cathodic reaction. The antioxidant activity of BF was well correlated to corrosion inhibition efficiency.  相似文献   

16.
Rosmarinus officinalis extract (ROE) was studied chemically (mass loss, ML), electrochemically impedance spectrometry (EIS), and potentiodynamic polarization (PDP) as a corrosion inhibitor in 1 M nitric acid. According to ML, ROE is effective like a copper preservative in 1 M HNO3 acid solution at R.T by improving inhibitor concentration up to 77 % at 300 ppm and 25 °C. A study was conducted regarding the effect of temperature on copper adsorption, as well as the calculation of adsorption coefficients. Results indicated that physisorption increases with temperature, indicating a decrease in inhibition efficiency (%IE). Langmuir's adsorption model was consistent with the adsorption mechanism. Using the PDP method, the inhibitor accumulated on the copper surface in mixed forms. Moreover, EIS revealed that the value of double-layer capacitance dropped with an increased dose of ROE, while the charge transfer resistance improved. A different approach was taken to the examination of surfaces. Both theoretical studies and practical results were calculated and compared to demonstrate that the results were valid.  相似文献   

17.
The inhibition performance of five azomethine derivatives such as: 1-(4-Methyloxy phenylimino)-1-(phenylhydrazono)-propan-2-one (SB1), 1-(4-Methylphenylimino)-1-(phenylhydrazono) propan-2-one (SB2), 1-(phenylimino)-1(phenylhydrazono)-propan-2-one (SB3), 1-(4-Bromo phenylimino)-1(phenylhydrazono)-propan-2-one (SB4) and 1-(4-Chlorophenylimino)-1(phenylhydrazono) -propan-2-on (SB5) as corrosion inhibitors for mild steel in sulfuric acid 0.5 ?M were investigated using different methods. All experimental results demonstrate that these compounds are eficients inhibitors. The inhibition efficiencies (IE) increase with inhibitors concentration. At 7.5 × 10?5 ?M, the IE was 97.27%, 96.31%, 94.23%, 93.19 and 91.64% for SB1, SB2, SB3, SB4 and SB5, respectively. The potentiodynamic polarization results indicated that all the studied inhibitors act as mixed type. The adsorption process on mild steel surface obeyed Langmuir isotherm. The associated activation parameters and thermodynamic have been calculated and discussed. The adsorbed film formed on the metal surface was characterized by SEM and EDX.  相似文献   

18.
Chalcones are secondary metabolites of great interest in chemistry due to their broad biological activities. In recent years, the versatility of this class of molecules has been demonstrated, especially in several synthetic analogs, which have shown behavior as corrosion inhibitors. In this article, a series of chalcone analogs were synthesized using the Claisen-Schmidt methodology in both conventional and microwave-assisted irradiation methodologies. The obtained compounds are non-soluble, which widens the window of chalcones with the possibility of being used as anticorrosive. These were analyzed by electrochemical impedance spectroscopy, potentiodynamic polarization, weight loss measurements and scanning electron microscopy. The results suggest that the chalcone compounds such as the trans-4-(N,N-diphenylamino)chalcone (CH11), (E)-1-phenyl-3-(thiophen-2-yl)prop-2-en-1-one (CH15) and (E)-1-phenyl-3-(thiophen-3-yl)prop-2-en-1-one (CH16) have anticorrosive activity for carbon steel in HCl solutions. The electrochemical techniques showed that increasing the mass of the three chalcone on carbon steel increases the efficiency of the inhibition. A mass amount of 1.4 mg of CH15 or CH16 was shown to have the maximum inhibition from corrosion, but for CH11 the maximum inhibition was 3.0 mg on carbon steel. The percentage inhibition that reached these three compounds was about 95 % at 20 °C. Theoretical calculations by Density Functional Theory (DFT) were performed to explain the measured corrosion decrease assisted by compounds CH11, CH15, and CH16.  相似文献   

19.
《印度化学会志》2022,99(11):100742
The heterocyclic system, namely 4-phenyl-decahydro-1H-1,5-benzodiazepin-2-one (POBZ) was inspected as a corrosion inhibitor of carbon steel (CS) in a 1 M HCl medium through electrochemical impedance spectroscopy (EIS), potentiodynamic polarization measurements (PDP), and scanning electron microscopy (SEM). The experimental data indicate that the inhibiting action augments with augmenting POBZ amount and reduces with augmenting temperature. The inhibiting action efficiency of 90.98% is obtained with 0.001 M at 303 K. The potentiodynamic polarization (PDP) results mentioned that the POBZ is of mixed type. The adsorption of POBZ on the CS followed Langmuir isotherm. SEM exams affirmed that the steel surface is smooth in presence of POBZ. In light of the calculations of density functional theory (DFT) and molecular dynamics simulation, the mechanism of POBZ inhibitory activity was addressed.  相似文献   

20.
The inhibitive action of pulegone and pulegone oxide toward acid corrosion of steel in molar hydrochloric acid was studied by weight loss measurements, potentiodynamic polarization, and impedance spectroscopy (EIS) methods. The pulegone is extracted starting from oil of Pennyroyal Mint (Mentha pulegium). The natural compound was found to delay the corrosion rate. The pulegone oxide is prepared by oxidation of pulegone. The inhibition efficiency was found to increase with the inhibitor content to attain 81 and 75% at 5 g dm−3 for pulegone and pulegone oxide. The increase in temperature leads to an increase in the inhibition efficiency of the natural compared. Correspondence: Belkheir Hammouti, Laboratoire de chimie Appliquée & Environnement, Faculté des Sciences, B.P. 717, 60000 Oujda, Morocco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号