首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

A tridentate ONN donor Schiff-base hydrazone ligand, H2L, was synthesized by the condensation of 2-amino-4-hydrazino-6-methyl pyrimidine with o-hydroxyacetophenone. The structure of the ligand was elucidated by IR and 1H NMR spectra which indicated the presence of three different coordinating groups, the oxygen atom of the phenolic OH group, the nitrogen atom of the azomethine, C=N, group and one of the nitrogen atoms of the heterocyclic ring. The ligand behaves either as a tridentate (N2O sites) neutral, mono- or di-basic ligand or as a bidentate (NO sites) monobasic ligand depending on the pH of the reaction medium and the metal ion. The mass spectrum of the ligand showed the presence of the molecular ion peak. Different types of metal complexes, mononuclear such as [(HL)M(OAc)]·xH2O (M = Cu or Zn), [(HL)M(OAc)H2O]·xH2O (M = Ni or UO2), [(HL)Co(OH2)Cl]·2H2O, [(H2L)FeCl3]·3½H2O, [(L)FeCl(H2O)2]· 2¼H2O, [(HL)L'FeCl(H2O)]·H2O (L' = 8-hydroxyquinoline, 8-HQ), [(HL)L'FeCl]Cl·xH2O (L' = 1,10-phenanthroline, phen, or 2,2'-bipyridyl, bpy) and [(HL)L'Cu]·ClO4 (L' = phen). Also, binuclear complexes with oxalic acid of the type [(HL)ClFe(ox)FeCl(HL)], [(HL)Cu(ox)Cu(HL)] were obtained. The IR spectra of the binuclear complexes indicated that the oxalate anion acts as a bridging tetradentate ligand. Elemental analyses, IR, electronic and ESR spectra as well as conductivity and magnetic susceptibility measurements were used to elucidate the structures of the newly prepared metal complexes. Square-planar geometry is suggested for the Cu(II) complex, octahedral geometry for the Fe(III), Ni(II) complexes, tetrahedral geometry for the Co(II) and Zn(II) complexes and pentagonal-bipyramidal geometry for the UO2(VI) complex.  相似文献   

2.
Two novel complexes, C38H48CoN2O2 (I) and C38H48N2O2Zn (II), were prepared through an analogous procedure with a corresponding metal chloride and a bulky Schiff base ligand (HL) which derived from rimantadine and salicylaldehyde in appropriate solvents, respectively. They were structurally characterized by the means of IR, UV-Vis, elemental analysis, molar conductance, PXRD and single-crystal X-ray diffraction (CIF files nos. 946735 (I), 893304 (II)). Single-crystal X-ray diffraction analysis reveals that I belongs to the triclinic system, \(P\overline 1 \) space group; each asymmetric unit consists of one cobalt(II) complex and one lattice ethanol molecule. In each complex molecule, cobalt(II) atom is four-coordinated via two oxygen atoms and two nitrogen atoms from the deprotonated Schiff base ligands, forming an approximate planar geometry. The crystal structure also involves strong O–H···O intermolecular hydrogen bonds between the solvent alcoholic and phenol O atoms of complex molecule. Complex II belongs to the monoclinic system, Cc space group. Each asymmetric unit consists of one zinc(II) ion and two deprotonated ligands. Zinc(II) atom lies on a twofold rotation axis and is four-coordinated via two nitrogen atoms and two oxygen atoms from the Schiff base ligands, forming a distorted tetrahedral geometry.  相似文献   

3.
The following Zn(II), Cd(II) and Hg(II) complexes of neutral and deprotonated 6-amino-1-methyl-5-nitroso-uracil (HL) were prepared and studied by u.v.-vis, 1H-NMR and i.r. techniques: ZnL2·4H2O,ZnL2(H2O)2·H2O, CdCl2(HL)2·2H2O and HgL2·2H2O. In Zn(II) and Hg(II) complexes, the ligand is coordinated in anionic nitroso-phenolic form, acting as a bidentate ligand through the nitrogen and oxygen atoms of the 5-nitroso and 6-oxide groups, respectively. In the cadmium complex, the ligand seems to be either N,O- or only N-bound to the metal ion, with chlorine bridging. From the data obtained, molecular structures are proposed for each complex.  相似文献   

4.
The Schiff base ligand, HL · 0.5C2H5OH (HL = methyl N-[(4-chlorophenyl)(3-methyl-5-oxo-1-phenyl-4,5-dihydro-1H-pyrazol-4-ylindene)methyl]valine), was derived from condensation of 1-phenyl-3-methyl-4-(p-chlorbenzyl)-5-pyrazolone with L-valine methyl ester in a 1: 1 molar ratio in methanol, ether and isopropanol solution. Reaction of ligand with Co(ClO4)2 · 6H2O (in a 2: 1 molar ratio) in methanol solution afforded a mononuclear cobalt(II) complex, [Co(L)2] (I). Molecular structures of HL · 0.5C2H5OH and complex I were characterized by elemental analysis, IR and single crystal X-ray diffraction analysis. The enamine-keto form of the ligand has turned to imine form in complex I. Each Co(II) center in complex I is in a octahedral N2O4 coordination sphere. Both the Schiff base ligand and its Co(II) complex have been tested in vitro with agar dilution method to evaluate their antibacterial activity against bacteria Escherichia coli and Staphylococcus aureus. It has been found that they have higher activity against Escherichia coli than Staphylococcus aureus, and complex I has higher activity than HL · 0.5C2H5OH against the same bacteria.  相似文献   

5.
Several new two‐ligand complexes of zinc(II) with the aromatic N, N‐donor ligands 2, 2′‐bipyridine or 1, 10‐phenanthroline and one of three different α‐hydroxycarboxylates (HL′) derived of the α‐hydroxycarboxylic acids (H2L′) (2‐methyllactic, H2mL; mandelic, H2M or benzilic, H2B) were prepared. The compounds of formula [Zn(HL′)2(NN)]·nH2O (HL′ = HM, HB) were isolated as white powders and characterized by elemental analysis, IR spectroscopy and thermogravimetric analysis. The complexes of general formula [Zn(HL′)(NN)2](HL′)·nH2O (HL′ = HmL, HM) and [Zn(HB)2(NN)2], were obtained as single crystals and were characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis and X‐ray diffractometry. In all cases, the zinc atom is in a distorted octahedral environment. In [Zn(HL′)(NN)2](HL′)·nH2O the α‐hydroxycarboxylato ligands behave as bidentate chelating monoanion and an α‐hydroxycarboxylate as counterion is also present. In [Zn(HB)2(NN)2], the monoanionic benzilato ligand behaves as monodentate through one oxygen atom of the carboxylate function. The effect of the classical and no‐classical hydrogen bonding and of the π‐π and C‐H…π interactions in the 3D supramolecular arrangement of these molecular complexes is analyzed.  相似文献   

6.
The reaction of zinc bromide with the pentadentate chelating ligand 2, 6‐diacetylpyridine bis(thiosemicarbazone) (H2L1) yields the formation of a novel complex. Recrystallization in a acetone/water solution leads us to isolate the mixed ligand complex of [Zn(H2L1)Br0.49(OH)0.51]2·(HSO4)2·6H2O, structurally characterized. The complex is a dimer in which each zinc atom is seven‐co‐ordinated with the SNNNS‐chelating ligand occupying the five equatorial positions, a bromine atom or hydroxo group in one of the two axial positions and a sulfur atom of the centrosymmetrical molecule occupies the other axial site making a bridge between the two zinc atoms. To the best of our knowledge is the first S‐bridged dimeric Zinc(II) complex derived from 2, 6‐diacetylpyridine bis(thiosemicarbazone) ligand. The MALDI‐TOF mass, solid state IR and 1H NMR (in DMSO solution) spectra are also discussed.  相似文献   

7.
Reaction of a macrocyclic copper(II) complex [Cu(L)](ClO4)2 · 3H2O (I) (L = 1,3,10,12,16,19-hexaazatetracyclotetracosane) with a hexapod carboxylate ligand H6TTHA (H6TTHA = 1,3,5-triazine-2,4,6-triamine hexaacetic acid) and a tripod carboxylate ligand H3TATB (H3TATB = 4,4′,4″-S-triazine-2,4,6-triyl-tribenzoic acid) yielded two mononuclear copper(II) complexes [Cu(L)][H4TTHA] · 4H2O (II) and [Cu(L)][HTATB] · 4H2O (III). The complexes I–III have been structurally characterized. The crystal structures of complexes II and III show the copper(II) ion has a distorted pentacoordinate square-pyramidal geometry with two secondary and two tertiary amines from the macrocyclic complex [Cu(L)]2+ and one oxygen atom from the carboxylate ligand group at the axial position. The UV-Vis spectra are utilized to discuss the hydrolysis of the complex II.  相似文献   

8.
When a 3,5-bis(3,5-dicarboxylphenoxy)benzoic acid (H5L) ligand reacted with Co(II) salt as well as the 4′-bis(benzoimidazo-1-ly)biphenyl) (4,4′-bbibp) ligand, a novel coordination polymer based on Co with the chemical composition of {[Co2(HL) (4,4′-bbibp)2]·4(H2O)}n has been created. The single crystal X-ray diffraction and elemental analysis of compound 1 were carried out and the data were recorded. Its application value on the glioma was evaluated with the CCK-8 assay and the Annexin V-FITC/PI apoptosis assay. It has been shown that carboxyl groups in Co complexes can form multiple binding interactions with target proteins, however, the imidazole group doesn't form any binding interaction.  相似文献   

9.
Four chalcone–thiosemicarbazones (C-TSCs) of the type 2-((E)-3-(4-R-phenyl)-1-phenylallylidene)-N-phenylhydrazinecarbothioamide, where R?=?Cl (HL1), NO2 (HL2), CH3 (HL3) or CN (HL4), were prepared in good yields from the reaction of the respective chalcone with 4-phenyl-3-thiosemicarbazide and HCl in EtOH. Reaction of HL with CuCl2·2H2O or ZnCl2 in the presence of Et3N afforded the complexes [M(L)2], M?=?Cu(II) or Zn(II). X-ray diffraction analysis revealed that the ligands coordinate in their deprotonated form, in a bidentate fashion through the iminic nitrogen and sulfur atoms. Yeast activities of the compounds were tested, where the ligand HL4 was the most damaging derivative, exhibiting cell viability at about 50%. On the other hand, lipid peroxidation assays revealed that the ligand HL1 was able to better induce membrane damage compared to the other compounds. It has been found that coordination with Cu(II) and Zn(II) did not increase the biological activities of the C-TSCs.  相似文献   

10.
Chiral sodium salts of N-derivatives of aminoacetic acid based on (+)-3-carene (HLNa) and (?)-??-pinene (HLNa) were synthesized. Complexes Zn(HL)Cl (1), Cd(HL)Cl·0.5H2O (3), Zn(HL??)Cl·0.5H2O (4), and Cd(HL??)Cl·0.5H2O (5) were obtained. The single crystals of the coordination polymer [Zn(HL)Cl·2H2O] n (2) were grown. According to the X-ray diffraction analysis, the crystal structure of 2 consists of 1D chains built of Zn(HL)Cl and water molecules. The coordination polyhedron ClN2O2 is a distorted square pyramid. The HL? ligand performs the chelating tetradentate-bridging function, and the COO? group binds two adjacent Zn atoms. The IR spectroscopy data for compounds 1 and 3?C5 indicate the coordination of the COO?, NOH, and NH functional groups. The excitation and photoluminescence (PLM) spectra of the solid samples of compounds HLNa, HL??Na, 1, and 3?C5 were recorded at room temperature. The compounds exhibit blue PLM. The intensity of PLM of the CdII complexes is higher than that of the ZnII complexes, which is a characteristic feature of PLM of the studied compounds.  相似文献   

11.
《中国化学会会志》2018,65(9):1060-1074
Four divalent metal(II) complexes, namely [Co(II)L(H2O)Cl]·2H2O, [Ni(II)L(H2O)Cl]·4H2O, [Cu(II)L(H2O)Cl]·3H2O, and [Zn(II)L(H2O)Cl]·5H2O, {L = 2‐furan‐2‐ylmethyleneamino‐phenyl‐iminomethylphenol}, were synthesized and characterized by several techniques. The molar conductance measurement of all analyzed complexes in DMSO showed their non‐electrolytic nature. The new Schiff base ligand (HL) acts as tetradentate ligand, coordinated through deprotonated phenolic oxygen, furan ring oxygen, and two azomethine nitrogen atoms. The ligand field parameters were measured for the metal complexes, which were found to be in the range notified for an octahedral structure. The molecular structural parameters of the synthesized HL ligand and its related metal(II) complexes were calculated and correlated with the experimental parameters such as infrared (IR) data. The investigated ligand and metal complexes were screened for their in vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data confirmed the examined compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated against colon carcinoma (HCT‐116) and mouse myelogenous leukemia carcinoma (M‐NFS‐60) cell lines. The inhibition effect of HL ligand and its isolated complexes on the corrosion carbon in the form of a rod of area 0.35 cm2 in HCl was investigated by measuring the weight loss at 25 °C.  相似文献   

12.
Complexes of five bivalent metals with dl-threonine have been prepared and characterized by means of i.r. absorption, powder diffuse reflection, and electronic spectra, X-ray diffraction and magnetic susceptibility. The complexes appear to be of three distinct types. The first type includes ML2·nH2O (M = Ni, Cu, Zn; L = dl-threoninato anion), in which the ligand chelates metal ions through the nitrogen atom and the oxygen atom of the carboxylato group. Three species of copper(II) complexes have been prepared. They seem to be two trans forms and one cis form. MnCl2(HL)4·H2O is a second type in which the metal is coordinated through the oxygen atom of the carboxyl group and chloride ions, but is not coordinated through the nitrogen atom. 2CdCl2·HL·HCl·2H2O is a third type, in which the metal is coordinated through only chloride ions. In order to assign the observed frequencies of i.r. absorption spectra in detail, a normal coordinate analysis has been accomplished for the complexes of the first type as a 33-body problem. Copper(II) and zinc(II) complexes with l-threonine have been prepared for comparison.  相似文献   

13.
The reaction of copper(II) chloride dihydrate with 2-hydroxy-3-methoxybenzaldehydethiosemicarbazone (HL) ligand in a 1:1 ratio forms the complex [Cu(L)(Cl)] · H2O. The complex is characterized by spectroscopic, electrochemical, and thermal analysis. X-ray crystallographic analysis reveals that the central copper atom displays the distorted square planar geometry. The water molecule present in the lattice participates in a strong hydrogen bonding network, which leads to a 2D supramolecular arrangement.  相似文献   

14.
New palladium(II) complexes, [Pd(HL)Cl] · H2O (I) and {K[Pd(L1)(NO2)] · H2O}2, with S-methylisothiosemicarbazone of salicylaldehyde (H2L) and its derivative (H2L1) were synthesized. X-ray diffraction analysis demonstrated the ambident nature of S-alkylated thiosemicarbazone, which is attached to palladium(II) through O, N, and S donor atoms in I and through O, N, and N atoms in II. This is the first known case of metal coordination of the alkylated sulfur atom of a thiosemicarbazide moiety of the ligand. A mechanism of nitrosation of the terminal amide nitrogen atom of the H2L1 ligand during complexation was proposed.  相似文献   

15.
Three crystal structures of Ni compounds containing bis(pyridine-2-carbaldehyde thiosemicarbazone) ligand (HL), namely (pyridine-2-carbaldehyde thiosemicarbazonato)(pyridine-2-carbaldeyde thiosemicarbazone) nickel(II) nitrate hydrate [Ni(HL)L][NO3]·(H2O) (1), bis(pyridine-2-carbaldehyde thiosemicarbazone) nickel(II) dinitrate [Ni(HL)2][NO3]2·(2a), and bis(pyridine-2-carbaldehyde thiosemicarbazone) nickel(II) dinitrate dihydrate [Ni(HL)2][NO3]2·2(H2O) (2b) are determined by X ray diffraction methods. Comparative structural studies are carried out.  相似文献   

16.
2-(2-Hydroxy-5-methylphenyl)-1H-benzimidazole ligand (HL) and its complexes with Cu(NO3)2, Zn(NO3)2 have been synthesized and characterized. The structures of the compounds were confirmed on the basis of elemental analysis, molar conductivity, magnetic moment, FT-IR, 1H- and 13C NMR. Cu(II) complex has 1: 2 metal: ligand ratio, while Zn(II) complex is 1: 1. Crystal structure of 2-(2-hydroxy-5-methylphenyl)-1H-benzimidazolium chloride (HL · HC1) was determined by single-crystal X-ray diffraction. It crystallizes in the orthorombic, space group P212121and Z = 4.  相似文献   

17.
The synthesis and some properties of the Co(II) complex with di(hydroxymethyl)phosphinic acid (HL) of the composition CoL2·2H2O are described. X-ray powder diffraction analysis confirmed the phase homogeneity of the polycrystalline sample. The crystal structure is determined by X-ray diffraction method. The Co atom is located in the center of octahedron formed by the O atoms of two ligands L and of two water molecules. The ligand L performs bidentate-chelate function and is bonded to the Co atom through the O atoms of the phosphinate group and of one alcohol group.  相似文献   

18.
The pyridine‐2‐carbaldehyde semicarbazone ligand (HL) reacts with iron(II) and copper(II) perchlorates in boiling ethanol to yield red‐violet [FeII(HL)2](ClO4)2·H2O ( 1 ) and light‐green crystals [CuII(HL)2](ClO4)2·H2O ( 2 ). The crystals are triclinic with the metal ions in an octahedral environment, coordinated to two nitrogen and one oxygen‐donor atom from HL. Electronic, magnetic and electrochemical properties are presented as well.  相似文献   

19.
The article describes the synthesis and single-crystal X-ray analysis of two sulfato and one thiocyanato copper(II) complex with 2-acetylpyridine S-methylisothiosemicarbazone (HL) of the formulae [Cu(HL)SO4(H2O)]·H2O (1), [Cu2(HL)2(μ-SO4)2]·2H2O (2) and [Cu(HL)(NCS)(SCN)] (3), as well as the structure of the protonated ligand H2L+I. Complexes 1 and 2 were obtained from the reaction of aqueous/methanolic CuSO4·5H2O and ethanolic/methanolic H2L+I solutions, respectively. Complex 3 was synthesized by the reaction of methanolic solutions of Cu(ClO4)2·6H2O, the ligand and NH4SCN, with the addition of triethyl orthoformate. All three complexes have a slightly deformed square-pyramidal structure (τav = 0.15) with the tridentate NNN neutral ligand in the basal plane. In complexes 1 and 3 the apical position is occupied by the oxygen atom of the monodentate SO4 group, or the sulfur atom of the SCN group. Thanks to the hydrogen bonds, complex 3 may be thought of as having a pseudo-dimeric structure. In the authentic centrosymmetric dimer 2, the oxygen atoms of both SO4 groups occupy also the apical position of both coordination polyhedra, as well as an equatorial position. Complexes 1 and 3 have μeff values characteristic of magnetically isolated mononuclear Cu(II) complexes. In contrast to them, complex 2 has a μeff value of 1.57 BM, which is in agreement with its dinuclear structure. All the complexes, in addition to the X-ray analysis and magnetic measurements, were characterized by IR and UV–Vis spectroscopy and by thermal analysis.  相似文献   

20.
Copper(II) salts were reacted with various quinoline aldehyde chalcogensemicarbazones to yield compounds formulated as Cu(HL)X2 · nH2O (I: HL = quinoline aldehyde thiosemicarbazone (HL1), X = ClO4, n = 2; II: HL = quinoline aldehyde 4-C2H5-thiosemicarbazone (HL1a), X = NO3, n = 0; III: HL = quinoline aldehyde semicarbazone (HL2), X = ClO4, n = 3 and IV: HL = quinoline aldehyde 4-Ph-semicarbazone (HL2a), X = NO3, n = 1). Regardless of the reagent ratio, the products were compounds having the metal: ligand ratio of 1: 1, where the organic ligand was coordinated tridentate in a molecular form. Single-crystal X-ray diffraction showed that, depending on the chalcogen atom in the organic ligand (S or O), the substituent in the 4th position (at the terminal nitrogen atom), and the specifics of the acido ligand, complexes I–IV had appreciably differing molecular structure organizations. The structures of I and III are formed by a 1D charged coordination polymer, ClO 4 ? anions, and water molecules and may be described by the formula [Cu(HL)(H2O)(ClO4)] n (ClO4) n · nH2O. Copper(II) coordination polyhedra in I and II are (4 + 2) and (4 + 1 + 1) tetragonal bipyramids, respectively. In II and IV, the structures are monomeric and can be described as [Cu(HL1a)(NO3)2] with the metal coordination polyhedron shaped as a (4 + 1) tetragonal pyramid in II and as [Cu(HL2a)(H2O)(NO3)](NO3) with the metal coordination polyhedron shaped as a (3 + 2) trigonal bipyramid in IV. The structure of II is built of molecular complexes, each comprising, apart from ligand HL1a, two monodentate coordinated NO 3 ? groups. The oxygen atom of one anion together with the NNS donor atom set of ligand HL1a form the base, and the oxygen atom of the other anion is in the apex of the coordination polyhedron. In IV, the structure is ionic and built of NO 3 ? anions and [Cu(HL2a)(H2O)(NO3)]+ complex cations, where a cationic coordination polyhedron has a trigonal-bipyramidal configuration with organic ligand HL2a positioned along the long edge. The bipyramidal base is made up by the oxygen atoms of the coordinated water molecule and monodentate nitrato group and the nitrogen atom N2 of the azomethyne group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号