首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amberlite XAD-4 resin has been functionalized with succinic acid by coupling it with dibromosuccinic acid after acetylation. The resulting resin has been characterized by FT-IR, elemental analysis and TGA and has been used for preconcentrative separation of uranium(VI) from host of other inorganic species prior to its determination by spectrophotometry. The optimum pH value for quantitative sorption of uranium(VI) in both batch and column modes is 4.5-8.0 and desorption can be achieved by using 5.0 ml of 1.0 mol l−1 HCl. The sorption capacity of functionalized resin is 12.3 mg g−1. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 50 μg of uranium(VI) present in 1000 ml of solution gave a mean absorbance of 0.10 with a relative standard deviation of 2.56%. The detection limit corresponding to three times the standard deviation of the blank was found to be 2 μg l−1. Various cationic and anionic species at 200-fold amounts do not interfere during the preconcentration of 5.0 μg of uranium(VI) present in 1000 ml (batch) or 100 ml (column) of sample solution. Further, adsorption kinetic and isotherm studies were also carried out by a batch method to understand the nature of sorption of uranium(VI) with the succinic acid functionalized resin. The accuracy of the developed solid phase extractive preconcentration method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA soil-7) reference material. Further, the above procedure has been successfully employed for the analysis of soil and sediment samples.  相似文献   

2.
Avivar J  Ferrer L  Casas M  Cerdà V 《Talanta》2011,84(5):1221-1227
The hyphenation of lab-on-valve (LOV) and multisyringe flow analysis (MSFIA), coupled to a long path length liquid waveguide capillary cell (LWCC), allows the spectrophotometric determination of uranium in different types of environmental sample matrices, without any manual pre-treatment, and achieving high selectivity and sensitivity levels. On-line separation and preconcentration of uranium is carried out by means of UTEVA resin. The potential of the LOV-MSFIA makes possible the fully automation of the system by the in-line regeneration of the column. After elution, uranium(VI) is spectrophotometrically detected after reaction with arsenazo-III. The determination of levels of uranium present in environmental samples is required in order to establish an environmental control. Thus, we propose a rapid, cheap and fully automated method to determine uranium(VI) in environmental samples. The limit of detection reached is 1.9 ηg of uranium and depending on the preconcentrated volume; it results in ppt levels (10.3 ηg L−1). Different water sample matrices (seawater, well water, freshwater, tap water and mineral water) and a phosphogypsum sample (with natural uranium content) were satisfactorily analyzed.  相似文献   

3.
A procedure for separation and preconcentration of trace amounts of copper in natural water samples, has been proposed. It is based on the adsorption of copper(II) ions onto a column of Amberlite XAD-2 resin loaded with calmagite reagent. This way amounts of copper within the range from 0.0125 to 25.0 μg, in a sample volume of 25 to 250 ml, and pH from 3.7 to 10.0 was concentrated as calmagite complex in a column of 0.50 g of Amberlite XAD-2 resin. Copper (II) ion was desorpted by using 5.0 ml of 2 mol l−1 hydrochloric acid. Detection and determination limits of the proposed procedure for 250 ml sample volume were 0.15 and 0.50 μg l−1, respectively. Selectivity test showed that (in the indicated concentration), calcium(II) (500 mg l−1), magnesium(II) (500 mg l−1), strontium(II) (50 mg l−1), iron(III) (10 mg l−1), nickel(II) (10 mg l−1), cobalt(II) (10 mg l−1), cadmium(II) (10 mg l−1) and lead(II) (10 mg l−1) did not interfere in copper determination by this procedure. Precision of the method, evaluated as the relative standard deviation by analyzing a series of seven replicates, was 2.42% for a copper mass of 1.0 μg in a sample volume of 100 ml. The accuracy of the proposed procedure was evaluated by means of copper determination in reference biological samples. The achieved results were in good agreement with certified values. The extractor system had a sorption capacity of 1.59 μmol of copper per gram of resin loaded with calmagite. The proposed procedure was applied for copper determination by FAAS in natural water samples. Samples were collected from different places of Salvador city, Bahia, Brazil. The achieved recovery, measured by the standard addition technique, showed that the proposed procedure had good accuracy. A good enrichment factor (50×) and simplicity are the main advantages in this analytical procedure.  相似文献   

4.
Y. Fajardo  F. Garcias  M. Casas 《Talanta》2007,71(3):1172-1179
A new automatic method for preconcentration and separation of radium in water samples has been developed. Such method combines both multisyringe (MSFIA) and multi-pumping (MPFS) flow analysis techniques allowing to analyze larger sample volumes with a higher throughput than other previous methodologies. Ra adsorbed on MnO2, deposited on cotton fiber, is eluted with hydroxylamine and subsequently coprecipitated with BaSO4. 226Ra activity is determined off-line by using a low background proportional counter. The procedure yield is (90 ± 3)% and its lower limit of detection 0.05 Bq L−1. This method has been applied satisfactorily to different types of spiked water (tap, mineral and seawater).  相似文献   

5.
A new chelating sorbent has been developed using Amberlite XAD-2 resin anchored with pyrocatechol through –N=C– group. This sorbent, characterised by elemental analysis and infrared (IR) spectra, was used as packing for the minicolumn in an on-line system preconcentration system for cadmium, cobalt, copper and nickel determination. Metal ions were sorbed in the minicolumn, from which it could be eluted directly to the nebulizer–burner system of the flame atomic absorption spectrometer (FAAS). Elution of all metals from minicolumn can be made with 0.50 mol L 1 HCl or HNO3. The enrichment factors obtained were 16 (Cd), 24 (Co), 15 (Cu) and 19 (Ni), for 60 s preconcentration time, and 39 (Cd), 69 (Co), 36 (Cu) and 41 (Ni), if used 180 s preconcentration time. Under the optimum conditions, the proposed procedure allowed the determination of cadmium, cobalt, copper and nickel with detection limits of 0.31, 0.32, 0.39 and 1.64 μg L 1, respectively, when used preconcentration periods of 180 s. The accuracy of the developed procedure was sufficient and evaluated by the analysis of the certified reference materials NIST 1515 apple leaves and NIST 1570a spinach leaves. The method was applied to the analysis of food samples (spinach, black tea and rice flour).  相似文献   

6.
A flow injection on-line determination of uranium(VI) after preconcentration in a minicolumn having amberlite XAD-4 resin impregnated with dibenzoylmethane (DBM) is described. Uranium(VI) is selectively adsorbed from aqueous solution of pH 5.5 in the minicolumn (5.5 cm long with 5.0 mm i.d.) at a flow rate of 13.6 mL min−1. The uranium(VI) complex was desorbed from the resin by 0.1 mol dm−3 HCl at a flow rate of 4.2 mL min−1 and mixed with arsenazo-III solution (0.05% solution in 0.1 mol dm−3 HCl, 4.2 mL min−1), and taken to the flow through cell of spectrophotometer where its absorbance was measured at 651 nm. Various parameters affecting the complex formation and its elution were optimized. Peak height (absorbance) was used for data analyses. The preconcentration factors of 36 and 143, detection limits of 0.9 and 0.232 μg L−1, sample throughputs of 40 and 10 were obtained for preconcentration time of 60 and 300 s, respectively. The tolerance limits of many interfering cations like Th(IV) and rare-earth elements were improved. The proposed method was applied on different water (spiked tap, well and sea water) and biological samples and good recovery was obtained. The method was also validated on mocked uranium ore sample and the results were in good agreement with the reported value.  相似文献   

7.
It is the first time that triphenylmethane was used as an adsorbent to preconcentrate and separate trace amount of molybdenum in water samples. The effects of different parameters, such as acidity, stirring time and various metal ions, the amounts of triphenylmethane and salicyl fluorine, etc. on the enrichment yield of molybdenum have been studied to optimize the experimental conditions. Under the optimum conditions, molybdenum can be adsorbed on the surface of microcrystalline triphenylmethane loaded with salicyl fluorone by the intermolecular action strength. The possible reaction mechanism for the enrichment of molybdenum was discussed in detail in this paper. Mo(VI) can be completely separated from Pb(II), Co(II), Cu(II), Cr(III), Ni(II), Hg(II), Zn(II), Cd(II), Fe(III) and Al(III) in the solution. The proposed method was successfully applied to the determination of trace amount of molybdenum in various water samples by spectrophotometry after preconcentration using microcrystalline triphenylmethane. The preconcentration factor is from 83 (500 ml water sample was enriched to 6.0 ml) to 166 (1000 ml water sample was enriched to 6.0 ml). The detection limit is 1.3 × 10−5 mg l−1 and the linearity is maintained in the concentration range 3.8 × 10−3 to 0.36 mg l−1 with a correlation coefficient of 0.9998. The recoveries are in the range of 93.5-104%. The relative standard deviation is 1.8-2.9%. Analytical results obtained with this novel method are very satisfactory.  相似文献   

8.
Three analytical methods for determination of uranium in environmental samples by a fluorescence technique have been validated and compared in accordance with the Eurachem Guide on method validation. The first method depends on uranium separation from iron using the mercury anode technique; in the other two methods uranium is separated from iron on an anion exchange column by use of either a solution of hydrochloric acid containing ascorbic acid and hydrazine hydrate or a dilute sulfuric acid solution. Detection limits, repeatability, reproducibility, and recovery coefficient were the main validation characteristics. The results showed that better statistical values can be achieved by using the third method. Control charts for in-house control samples and international intercomparison samples have also shown that the third method is more statistically stable with time. In addition, uncertainties of measurement were estimated and compared for the three methods. It was found that the Eurachem Guide and comparison of quality statistical validation data can be good tools for selection of the appropriate method for an application.  相似文献   

9.
In this work, Amberlite XAD-2 resin functionalized with 4,5-dihydroxy-1,3-benzenedisulfonic acid was synthesized, characterized and applied as a new packing material for an on-line system to nickel preconcentration. The method is based on the sorption of Ni(II) ions in a minicolumn containing the synthesized resin, posterior desorption using an acid solution and measurement of the nickel by spectrophotometry (PAR method). The optimization of the system was performed using factorial design and Doehlert matrix considering five variables: eluent concentration, PAR solution pH, sample flow rate, PAR solution concentration and sample pH. Signals were measured as peak height by using an instrument software. Using the experimental conditions defined in the optimization, the method allowed nickel determination with achieved sampling rate of 25 samples per hour, detection limit (3 s) of 2 μg l−1 and precision (assessed as the relative standard deviation) of 8.2-2.6%, for nickel solutions of 10.0-200.0 μg l−1 concentration, respectively. The experimental enrichment factor of the proposed system was 46, for 120 s preconcentration time. The proposed procedure was applied for nickel determination in food samples. Recoveries of spike additions (5 or 10 μg g−1) to food samples were quantitative (94-110%).  相似文献   

10.
A flow injection on-line sorption preconcentration electrothermal atomic absorption spectrometric system for fully automatic determination of lead in water was investigated. The discrete non-flow-through nature of ETAAS, the limited capacity of the graphite tube and the relatively large volume of the knotted reactor (KR) are obstacles to overcome for the on-line coupling of the KR sorption preconcentration system with ETAAS. A new FI manifold has been developed with the aim of reducing the eluate volume and minimizing dispersion. The lead diethyldithiocarbamate complex was adsorbed on the inner walls of a knotted reactor made of PTFE tubing (100 cm long, 0.5 mm i.d.). After that, an air flow was introduced to remove the residual solution from the KR and the eluate delivery tube, then the adsorbed analyte chelate was quantitatively eluted into a delivery tube with 50 μl of ethanol. An air flow was used to propel the eluent from the eluent loop through the reactor and to introduce all the ethanolic eluate onto the platform of the transversely heated graphite tube atomizer, which was preheated to 80°C. With the use of the new FI manifold, the consumption of eluent was greatly reduced and dispersion was minimized. The adsorption efficiency was 58%, and the enhancement factor was 142 in the concentration range 0.01–0.05 μg l−1 Pb at a sample loading rate of 6.8 ml min−1 with 60 s preconcentration time. For the range 0.1–2.0 μg l−1 of Pb a loading rate of 3.0 ml min−1 and 30 s preconcentration time were chosen, resulting in an adsorption efficiency of 42% and an enhancement factor of 21, respectively. A detection limit (3σ) of 2.2 ng l−1 of lead was obtained using a sample loading rate of 6.8 ml min−1 and 60 s preconcentration. The relative standard deviation of the entire procedure was 4.9% at the 0.01 μg l−1 Pb level with a loading rate of 6.8 ml min−1 and 60 s preconcentration, and 2.9% at the 0.5 μg l−1 Pb level with a 3.0 ml min−1 loading rate and 30 s preconcentration. Efficient washing of the matrix from the reactor was critical, requiring the use of the standard addition method for seawater samples. The analytical results obtained for seawater and river water standard reference materials were in good agreement with the certified values.  相似文献   

11.
Liu Y  Chang X  Wang S  Guo Y  Din B  Meng S 《Talanta》2004,64(1):160-166
A highly sensitive and selective solid-phase spectrophotometric method for the determination of sub-μg l−1 level nickel(II) is described. Nickel(II) was sorbed on a styrene-divinylbenzene-type resin Amberlite XAD-4 as a Ni(II)-o-carboxylphenyldiazoaminoazobenzene (o-CDAA) complex. At pH 9.0, resin phase absorbances at 588 and 800 nm were measured directly with an apparent molar absorptivity of 2.95×107 g mol−1 cm−1. The linear range of the determination was 1.2-41 μg g−1 resin. The detection limit and the quantification limit were found to be 0.24 and 0.76 μg g−1 resin, respectively. The relative standard deviation of 10 replicate determinations of 1.0 μg nickel(II) in 100 ml sample was of 1.5%. The tolerance limit of coexistent ions was also investigated. Most of them are in tolerable amount. For practical analyses, 1 ml acetylacetone used can eliminate the interferences caused by Cu and Fe. The procedure was validated by analysis a certified water reference material (GBW 08618 Beijing, China) and a tomato leaf certified reference material (GBW 08402 Beijing, China) with the results in agreement with the certified values. The method was applied to the determination of nickel(II) in water and vegetable samples with satisfactory results.  相似文献   

12.
Metal determinations at low concentration levels (≤ng mL−1) comprise one of most important targets in analytical chemistry. This interest also increases in different areas such as biology, medicine, environment and food samples. In spite of inherent high sensitivities obtained for electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma-mass spectrometry (ICP-MS), these techniques have some limitations depending on the concomitants. As a result, interest in preconcentration techniques still continues increasingly for trace metal determinations by flame atomic absorption spectrometry (FAAS) due to the high accuracy of this method.In this work, thioureasulfonamide resin was synthesized, characterized and applied as a new sorption material for determinations of cadmium and lead in water samples. The method is based on the sorption of Cd and Pb ions on the synthesized resin without using any complexing reagent. The optimization of experimental conditions was performed using factorial design including pH, amount of resin, contact time, first sample volume and final eluent volume. Using the experimental conditions defined in the optimization, the method was applied to the determination and preconcentration of Cd and Pb at ng mL−1 level in natural water. Flame AAS was used for trace metal determinations. This method exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent and optimum pH of solution presents in acidic media. Consequently, 600- and 360-fold improvements in the sensitivity of FAAS were achieved by combining the slotted tube atom trap-atomic absorption spectrometry (STAT-FAAS) and the purposed enrichment method for Cd and Pb, respectively.  相似文献   

13.
An on-line scandium preconcentration and determination method was developed with spectrophotometer associated with flow injection. Scandium from aqueous sample solution of pH 4.5 was selectively retained in the minicolumn containing XAD-4 resin impregnated with nalidixic acid at a flow rate of 11.8 mL min?1 as scandium–nalidixic acid complex. The scandium complex was desorbed from the resin by 0.1 mol L?1 HCl at a flow rate of 3.2 mL min?1 and mixed with arsenazo-III solution (0.05 % solution in 0.1 mol L?1 HCl, 3.2 mL min?1) and taken to the flow through cell of spectrophotometer where its absorbance was measured at 640 nm. The preconcentration factors obtained were 35 and 155; detection limits of 1.4 and 0.32 μg L?1 and sample throughputs of 40 and 11 were obtained for preconcentration time of 60 and 300 s, respectively. The tolerance limits of many interfering cations like Th(IV), U (VI), rare-earths and anions like tartrate, citrate, oxalate and fluoride were improved. The method was successfully applied to the determination of scandium from mock seawater samples and good recovery was obtained. The method was also validated on certified reference material IAEA-SL-1 (lake sediment) and the result was in good agreement with the reported value.  相似文献   

14.
Singh BN  Maiti B 《Talanta》2006,69(2):393-396
Amberlite XAD-4 adsorber resin was modified with 8-hydroxy quinoline (Oxine) by equilibrating with methanol solution of the reagent and the modified resin was used as a support material for the solid phase extraction and preconcentration of UO22+ from aqueous solution at pH between 4 and 5.5. Ten micrograms of uranium from 300 ml of aqueous phase could be quantitatively extracted in to 1 g of the modified resin giving an enrichment of 200. Uranium collected in the column could be eluted out with methanol-HCl mixture and determined spectrophotometrically using arsenazo(III) as the chromogenic reagent. The preconcentration could be made selective to uranium by using EDTA as a masking agent for transition metal ions and Th(IV).  相似文献   

15.
《Analytica chimica acta》2003,481(2):283-290
In the present paper, an on-line system for preconcentration and determination of zinc by Flame Atomic Absorption Spectrometry (FAAS) is proposed. It is based in the sorption of zinc(II) ions on a minicolumn packed with polyurethane foam loaded with 2-[2′-(6-methyl-benzothiazolylazo)]-4-bromophenol (Me-BTABr) reagent. Chemical and flow variables as pH effect, sample flow rate and eluent concentration were optimized using univariate methodology. The results demonstrated that zinc can determinate using the sample pH in the range of 6.5-9.2, sample flow rate of 6.0 ml min−1, and the elution step using 0.10 mol l−1 hydrochloric acid solution at flow rate of 5.5 ml min−1. In these conditions, an enrichment factor of 23 and a sampling rate of 48 samples per hour were achieved. The detection limit (DL, 3σ) as IUPAC recommendation was 0.37 μg l−1 and the precision (assessed as the relative standard deviation, R.S.D.) reached values of 5.9-1.8% in zinc solutions of 1.0-10.0 μg l−1 concentration, respectively. The method was successfully applied to the determination of trace amounts of zinc in natural water samples from Salvador (Brazil).  相似文献   

16.
Madrakian T  Afkhami A  Esmaeili A 《Talanta》2003,60(4):831-838
A simple, accurate, sensitive and reliable method for the selective extraction and spectrophotometric determination of Bi(III) was developed. Bi(III) was collected on activated carbon after complexation with thiourea and bromide ion in acidic media. The complex retained on activated carbon was then desorbed with the bromide solution in N,N-dimethylformamide (DMF) and determined spectrophotometrically at 375 nm. The linear calibration ranges and limit of detection for the proposed method was 1.00×10−9-1.50×10−7 and 8.00×10−10 mol l−1, respectively. The influence of the interfering cations and anions on the determination of bismuth was investigated. The method was successfully applied to the extraction and determination of bismuth in natural water samples.  相似文献   

17.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

18.
A cloud point extraction process using mixed micelle of the cationic surfactant CTAB and non-ionic surfactant TritonX-114 to extract uranium(VI) from aqueous solutions was investigated. The method is based on the color reaction of uranium with pyrocatechol violet in the presence of potassium iodide in hexamethylenetetramine buffer media and mixed micelle-mediated extraction of complex. The optimal extraction and reaction conditions (e.g. surfactant concentration, reagent concentration, effect of time) were studied and the analytical characteristics of the method (e.g. limit of detection, linear range, preconcentration, and improvement factors) were obtained. Linearity was obeyed in the range of 0.20-10.00 ng mL−1 of uranium(VI) ion and the detection limit of the method is 0.06 ng mL−1. The interference effect of some anions and cations was also tested. The method was applied to the determination of uranium(VI) in tap water, waste-water and well water samples.  相似文献   

19.
A simple dispersive liquid-liquid microextraction methodology based on the application of 1-hexylpyridinium hexafluorophosphate [HPy][PF6] ionic liquid (IL) as an extractant solvent was proposed for the preconcentration of trace levels of zinc as a prior step to determination by flame atomic absorption spectrometry (FAAS). Zinc was complexed with 8-hydroxyquinoline (oxine) and extracted into ionic liquid. Some effective factors that influence the microextraction efficiency such as pH, oxine concentration, amount of IL, ionic strength, temperature and centrifugation time were investigated and optimized. In the optimum experimental conditions, the limit of detection (3 s) and the enhancement factor were 0.22 μg L−1 and 71, respectively. The relative standard deviation (RSD) for six replicate determinations of 13 μg L−1 Zn was 1.92%. In order to validate the developed method, a certified reference material (NIST SRM 1549) was analyzed and the determined values were in good agreement with the certified values. The proposed method was successfully applied to the trace determination of zinc in water and milk samples.  相似文献   

20.
A very sensitive and selective flow injection on-line determination method of thorium (IV) after preconcentration in a minicolumn having XAD-4 resin impregnated with N-benzoylphenylhydroxylamine is described. Thorium (IV) was selectively adsorbed from aqueous solution of pH 4.5 in a minicolumn at a flow rate of 13.6 mL min?1, eluted with 3.6 mol dm?3 HCl (5.6 mL min?1), mixed with arsenazo-III (0.05% in 3.6 mol dm?3 HCl stabilized with 1% Triton X-100, 5.6 mL min?1) at confluence point and taken to the flow through cell of spectrophotometer where its absorbance was measured at 660 nm. Peak height was used for data analyses. The preconcentration factors obtained were 32 and 162, detection limits of 0.76 and 0.150 ??g L?1, sample throughputs of 40 and 11 h?1 for preconcentration times of 60 and 300 s, respectively. The tolerance levels for Zr(IV) and U(VI) metal ions is increased to 50-folds higher concentration to Th(IV). The proposed method was applied on different spiked tap water, sea water and biological sample and good recovery was obtained. The method was also applied on certified reference material IAEA-SL1 (Lake Sediment) for the determination of thorium and the results were in good agreement with the reported value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号