首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Using first‐principles calculations with predictive capability we show that organic molecules having negative electron affinity can be transformed to superhalogens with electron affinities far exceeding that of chlorine, once its core and ligand atoms are suitably replaced. The discovery of organic superhalogens could have significant impact in chemistry, allowing the synthesis of new materials and compounds.  相似文献   

2.
It has recently been demonstrated that chosen clusters of specific size and composition can exhibit behaviors reminiscent of atoms in the periodic table and hence can be regarded as superatoms forming a third dimension. An Al(13) cluster has been shown to mimic the behavior of halogen atoms. Here, we demonstrate that superatom compounds formed by combining superhalogens (Al(13)) with superalkalis (K(3)O and Na(3)O) can exhibit novel chemical and tunable electronic features. For example, Al(13)(K(3)O)3 is shown to have low first and second ionization potentials of 2.49 and 4.64 eV, respectively, which are lower than alkali atoms and can be regarded as ultra alkali motifs. Al(13)K(3)O is shown to be a strongly bound molecule that can be assembled into stable superatom assemblies (Al(13)K(3)O)n with Al(13) and K(3)O as the superatom building blocks. The studies illustrate the potential of creating new materials with an unprecedented control on physical and electronic properties.  相似文献   

3.
Samanta D  Wu MM  Jena P 《Inorganic chemistry》2011,50(18):8918-8925
Electron affinity (EA) is one of the most important factors that govern reactivity of atoms and molecules. Chlorine, with the highest electron affinity (3.6 eV) of all elements in the periodic table, is a classic example of reactive elements. Over past thirty years, much research has been done to expand the scope of molecules with electron affinities even larger than that of Cl. These molecules, called superhalogens, have the general formula MX(n+1) where M is a metal atom, X is a halogen atom, and n is the valency of the metal. In this paper we explore the potential of pseudohalogens such as CN, which mimic the chemistry of halogens, to serve as building blocks of new superhalogens. Using calculations based on density functional theory, we show that when a central Au atom is surrounded by CN moieties, superhalogens can be created with electron detachment energies as high as 8.4 eV. However, there is a stark contrast between the stability of these superhalogens and that of conventional AuF(n) superhalogens. Whereas AuF(n) complexes are stable up to n = 5 for neutrals and n = 6 for anions, Au(CN)(n) complexes (with CN moieties attached individually) are metastable beyond n = 1 for neutrals and n = 3 for anions. We investigate the nature and origin of these differences. In addition, we elucidate important distinctions between electron affinity (EA) and adiabatic detachment energy (ADE), two terms that are often used synonymously in literature.  相似文献   

4.
Super‐ and hyperhalogens are a class of highly electronegative species whose electron affinities far exceed those of halogen atoms and are important to the chemical industry as oxidizing agents, biocatalysts, and building blocks of salts. Using the well‐known Wade–Mingos rule for describing the stability of closo‐boranes BnHn2? and state‐of‐the‐art theoretical methods, we show that a new class of super‐ and hyperhalogens, guided by this rule, can be formed by tailoring the size and composition of borane derivatives. Unlike conventional superhalogens, in which a central metal atom is surrounded by halogen atoms, the superhalogens formed according to the Wade–Mingos rule do not have to have either halogen or metal atoms. We demonstrate this by using B12H13 and its isoelectronic cluster CB11H12 as examples. We also show that while conventional superhalogens containing alkali atoms require at least two halogen atoms, a single borane‐like moiety is sufficient to give M(B12H12) clusters (M=Li, Na, K, Rb, Cs) superhalogen properties. In addition, hyperhalogens can be formed by using the above superhalogens as building blocks. Examples include M(B12H13)2 and M(CB11H12)2 (M=Li–Cs). This finding opens the door to an untapped source of superhalogens and weakly coordinating anions with potential applications.  相似文献   

5.
Owing to their s2p5 electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH4, mimic the chemistry of halogens and readily form salts (e.g., Na+(AlH4)?), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage‐metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX4 (X=Cu, Ag, Au), these metal atoms may exhibit halogen‐like properties. By using density functional theory, we show that AlAu4 not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu4)2? (M=Na and K) and anionic (FAuF)? Au? (FAuF) range from 4.06 to 5.70 eV. Au‐based superhalogen anions, such as AlAu4? and AuF2?, have the additional advantage that they exhibit wider optical absorption ranges than their H‐based analogues, AlH4? and HF2?. Because of the catalytic properties and the biocompatibility of Au, Au‐based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu4, AlX4 (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom.  相似文献   

6.
Electron momentum spectroscopy, scanning tunneling microscopy, and photoelectron spectroscopy provide unique information about electronic structure, but their interpretation has been controversial. This essay discusses a framework for interpretation. Although this interpretation is not new, we believe it is important to present this framework in light of recent publications. The key point is that these experiments provide information about how the electron distribution changes upon ionization, not how electrons behave in the pre‐ionized state. Therefore, these experiments do not lead to a “selection of the correct orbitals” in chemistry and do not overturn the well‐known conclusion that both delocalized molecular orbitals and localized molecular orbitals are useful for interpreting chemical structure and dynamics. The two types of orbitals can produce identical total molecular electron densities and therefore molecular properties. Different types of orbitals are useful for different purposes.  相似文献   

7.
We review the optical and electrical properties of solids that are composed of semiconductor nanocrystals. Crystals, with dimensions in the nanometre range, of II-VI, IV-VI and III-V compound semiconductors, can be prepared by wet-chemical methods with a remarkable control of their size and shape, and surface chemistry. In the uncharged ground state, such nanocrystals are insulators. Electrons can be added, one by one, to the conduction orbitals, forming artificial atoms strongly confined in the nanocrystal. Semiconductor nanocrystals form the building blocks for larger architectures, which self-assemble due to van der Waals interactions. The electronic structure of the quantum dot solids prepared in such a way is determined by the orbital set of the nanocrystal building blocks and the electronic coupling between them. The opto-electronic properties are dramatically altered by electron injection into the orbitals. We discuss the optical and electrical properties of quantum dot solids in which the electron occupation of the orbitals is controlled by the electrochemical potential.  相似文献   

8.
Analogous to atoms, superatoms can be used as building blocks to compose molecules and materials. To demonstrate this idea, the possibility of using tetrahedral Ag4 cluster to form a series of superatomic molecules Ag4X4 (X=H, Li, Na, K, Cu, Ag, Au and F, Cl, Br) is discussed. Based on the super valence bond model, a tetrahedral Ag4 cluster can be viewed as a 4-electron superatom, which can mimic a sp3 hybridization C atom. By comparison of the representative superatomic molecules Ag4X4 (X=Au, Cl) with the corresponding simple molecules CX4 (X=H, Cl), the similarities in terms of chemical bonding patterns and molecular orbitals (MOs) are conspicuous. Energy calculations predict that the Ag4 superatom can bind with all the involved ligands. Furthermore, the stabilities of superatomic molecules are enhanced by the large gaps of the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gaps) and high aromaticity. Our studies may find applications in assembling materials with superatoms.  相似文献   

9.
The chemistry of boron clusters has been dominated by icosahedral carboranes for over half a century. Only in recent years has significant progress been made in the chemistry of supercarboranes (carboranes with more than 12 vertices). A number of CAd (carbon‐atoms‐adjacent) 13‐ and 14‐vertex carboranes, and CAp (carbon‐atoms‐apart) 13‐vertex carboranes as well as their corresponding 14‐ and 15‐vertex metallacarboranes have been successfully prepared and structurally characterized. This breakthrough relied on the use of CAd nido‐carborane dianions as starting materials. These supercarboranes can undergo single‐electron reduction to give stable supercarborane radical monoanions with [2n+3] framework electrons, and electrophilic substitution reaction to afford hexasubstituted supercarboranes. They can react with nucleophiles to offer monocarba‐closo‐dodecaborate monoanions from cage‐carbon extrusion reactions. Their unique chemical properties make the chemistry of supercarboranes distinct from that of their 12‐vertex analogues. These studies open up new possibilities for the development of polyhedral clusters of extraordinary size. This focus review offers an overview of recent advances in this growing research field.  相似文献   

10.
Calculations of large scale electronic structure within periodic boundary conditions, mostly based on solid state physics, allow the modeling of atomic forces and molecular dynamics for atomic assemblies of 100–1000 atoms, thus providing complementary information in material and macromolecular sciences. Nevertheless, these methods lack connections with the chemistry of simple molecules as isolated entities. In order to contribute to establish a conceptual connection between solid state physics and chemistry, the calculation of the extent of electron sharing between atoms, also known as delocalization index, is performed on simple molecules and on complexes with transition metal atoms, using density functional calculations where the Kohn–Sham molecular orbitals are represented in terms of plane waves and in periodic boundary conditions. These applications show that the useful measure of electron sharing between atomic pairs can be recovered from density functional calculations using the same set-up applied to large atomic assemblies in condensed phases, with no projections of molecular orbitals onto atomic orbitals.  相似文献   

11.
Using density functional theory and hybrid B3LYP exchange-correlation energy functional we have studied the structure, stability, and spectroscopic properties of singly and doubly charged anions composed of simple metal atoms (Na, Mg, Al) decorated with halogens such as Cl and pseudohalogens such as CN. Since pseudohalogens mimic the chemistry of halogen atoms, our objective is to see if pseudohalogens can also form superhalogens much as halogens do and if the critical size for a doubly charged anion depends upon the ligand. The electron affinities of MCl(n) (M = Na, Mg, Al) exceed the value of Cl for n ≥ (k + 1), where k is the normal valence of the metal atom. However, for M(CN)(n) complexes this is only true when n = k + 1. In addition, while the electron affinities and vertical detachment energies of MCl(n) complexes are close to each other, they are markedly different when Cl is replaced by pseudohalogen, CN. The origin of these anomalous results is found to be due to the large binding energy of cyanogen, (NCCN) molecule. Because of the tendency of CN molecules to dimerize, the ground state geometries of the neutral and anionic M(CN)(n) complexes are very different when their number exceed the normal valence of the metal atom. While our calculations support the conclusion of Skurski and co-workers that pseudohalogens can form the building blocks of superhalogens, we show that there is a limitation on the number of CN moieties where this is true. Equally important, we find large differences between the ground state geometries of the neutral and anionic M(CN)(n) complexes for n ≥ (k + 2) which could play an important role in interpreting future experimental data on M(CN)(n) complexes. This is because the electron affinity defined as the energy difference between the ground states of the anion and neutral can be very different from the adiabatic detachment energy defined as the energy difference between the ground state of the anion and its structurally similar neutral isomer.  相似文献   

12.
In present investigation, the interactions of iridium (Ir) atom with fluorine (F) atoms have been studied using the density functional theory. Up to seven F atoms were able to bind to a single Ir atom which resulted in increase of electron affinities successively, reaching a peak value of 7.85 eV for IrF7. The stability and reactivity of these clusters were analyzed by calculating highest occupied molecular orbital (HOMO)–LUMO gaps, molecular orbitals and binding energies of these clusters. The unusual properties of these clusters are due to the involvement of inner shell 5d‐electrons, which not only allows IrFn clusters to belong to the class of superhalogens but also shows that its valence can exceed the nominal value of 2. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Recent d-block element metallaborane chemistry, in which metal identity is varied with constant ancillary ligand, demonstrates how the rising energy of the d orbitals as one moves to earlier metals gives rise to non spherical cluster shapes that permit low formal cluster electron counts. In essence, the separation of frontier orbitals from “nonbonding” orbitals required by the isolobal analogy breaks down and the resulting mixing generates additional high-lying empty orbitals concurrently with shape change. A very similar mechanism explains recent p-block cluster chemistry albeit with variation in extent of external cluster ligation as the variable and separation of external lone pair orbitals from cluster bonding as the problem. Sensible, novel explanations of the shape/electron count relationships can be discovered for large group 13 clusters by recognizing the perturbation in cluster orbital energies when stabilization by ligand interactions is removed. These observations are pertinent to an understanding of large p-block clusters with internal atoms often referred to as nanoparticles.  相似文献   

14.
Using a combination of density functional theory and anion photoelectron spectroscopy experiment, we have studied the structure and electronic properties of CuCl(n)(-) (n = 1-5) and Cu(2)Cl(n)(-) (n = 2-5) clusters. Prominent peaks in the mass spectrum of these clusters occurring at n = 2, 3, and 4 in CuCl(n)(-) and at n = 3, 4, and 5 in Cu(2)Cl(n)(-) are shown to be associated with the large electron affinities of their neutral clusters that far exceed the value of Cl. While CuCl(n) (n ≥ 2) clusters are conventional superhalogens with a metal atom at the core surrounded by halogen atoms, Cu(2)Cl(n) (n ≥ 3) clusters are also superhalogens but with (CuCl)(2) forming the core. The good agreement between our calculated and measured electron affinities and vertical detachment energies confirm not only the calculated geometries of these superhalogens but also our interpretation of their electronic structure and relative stability.  相似文献   

15.
Quantum chemical calculations using gradient corrected density functional theory at B3LYP level reveals the unusual properties of a chromium (Cr) atom interacting with fluorine (F) atoms. Up to seven F atoms are bound to a single Cr atom, which results in increase of electron affinities as successive fluorine atoms are attached, reaching a peak value of 7.14 eV for CrF6. The large HOMO–LUMO energy gap, both in neutral and anionic form, further provide evidence of their stability. These unusual properties brought about by involvement of inner shell 3d-electrons, which not only allow CrF n (n = 1–7) clusters to belong to the class of superhalogens but also show that its valence can exceed the nominal value of 2.  相似文献   

16.
We have systematically calculated the ground state geometries, relative stability, electronic structure, and spectroscopic properties of PtCl(n) (n = 1-7) clusters. The bonding in these clusters is dominated by covalent interaction. In neutral clusters, chlorine atoms are chemically bound to Pt up to n = 5. However, in neutral PtCl(6) and PtCl(7) clusters, two of the chlorine atoms bind molecularly while the remaining bind as individual atoms. In the negative ions, this happens only in the case of PtCl(7) cluster. The geometries of both neutral and anionic clusters can be considered as fragments of an octahedron and are attributed to the stabilization associated with splitting of partially filled d orbitals under the chloride ligand field. The electron affinity of PtCl(n) clusters rises steadily with n, reaching a maximum value of 5.81 eV in PtCl(5). PtCl(n) clusters with n ≥ 3 are all superhalogens with electron affinities larger than that of chlorine. The accuracy of our results has been verified by carrying out photoelectron spectroscopy experiments on PtCl(n)(-) anion clusters.  相似文献   

17.
Abstract : We present quantum mechanical estimates for non-bonded, van der Waals-like, radii of 93 atoms in a pressure range from 0 to 300 gigapascal. Trends in radii are largely maintained under pressure, but atoms also change place in their relative size ordering. Multiple isobaric contractions of radii are predicted and are explained by pressure-induced changes to the electronic ground state configurations of the atoms. The presented radii are predictive of drastically different chemistry under high pressure and permit an extension of chemical thinking to different thermodynamic regimes. For example, they can aid in assignment of bonded and non-bonded contacts, for distinguishing molecular entities, and for estimating available space inside compressed materials. All data has been made available in an interactive web application.  相似文献   

18.
Electron delocalization between the reagent and reactant molecules is the principal driving force of chemical reactions. It brings about the formation of new bonds and the cleavage of old bonds. By taking the aromatic substitution reaction as an example, we have shown the orbitals participating in electron delocalization. The interacting orbitals obtained are localized around the reaction sites, showing the chemical bonds that should be generated and broken transiently along the reaction path. By projecting a reference orbital function that has been chosen to specify the bond being formed on to the MOs of the reactant molecules, the reactive orbitals that are very similar to the interacting orbital have been obtained. The local potential of the reaction site for electron donation estimated for substituted benzene molecules by using these projected orbitals shows a fair correlation with the experimental scale of the electron-donating and -withdrawing strength of substituent groups. The reactivity is shown to be governed by local electronegativity and local chemical hardness and also by the localizability of interaction on the reaction site. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
No organic molecules with electron affinities near or above those of halogens are known. We show for the first time that aromaticity rules can be used to design molecules with electron affinities far exceeding those of halogen atoms either by tailoring the ligands of cyclopentadienyl or by multiple benzoannulations of cyclopentadienyl in conjunction with the substitution of CH groups with isoelectronic N atoms. Results based on density functional theory revealed that the electron affinities of some of these organic molecules can reach as high as 5.59 eV, thus opening the door to new class of superhalogens that contain neither a metal nor a halogen atom.  相似文献   

20.
原子簇化合物的合成方法,由于条件限制,只有B、C、St等非金属元素与过渡金属袈基化合物等较为成熟.贵金属原子簇的合成则较困难.然而,应用激光等离子体反应,可使周期表内几乎所有元素都生成原子簇,为原子簇的生成与研究提供了一条新途径.该方法生成的原子簇在飞行时间质谱仪上可记录到一系列信号,某些信号呈现区域极大(或被称为‘匈数’吵].郑兰芬等用纯化的红磷粉分别与金粉、银粉混合,在激光等离子作源飞行时间质谱仪上得到一系列谱图【2]:ig与P作用只得到单核xg与P形成的lgy:iE离子簇.谱图较简单,*沪X最大可达叱叱…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号