首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three low-cost adsorbents (purified raw attapulgite (A-ATP), high-temperature-calcined attapulgite (T-ATP), and hydrothermal loading of MgO (MgO-ATP)) were prepared as adsorbents for the removal of Cd(II) and Pb(II). By evaluating the effect of the initial solution pH, contact time, initial solution concentration, temperature and coexistence of metal ions on Cd(II) and Pb(II) adsorption, the experimental results showed that MgO-ATP was successfully prepared by hydrothermal reaction and calcination as well as appearing to be a promising excellent adsorbent. At an initial pH of 5.0, A-ATP, T-ATP and MgO-ATP reached maximum adsorption amounts of 43.5, 53.9 and 127.6 mg/g for Pb(II) and 10.9, 11.2, and 25.3 mg/g for Cd(II) at 298 K, respectively. The Cd(II) adsorption on A-ATP was fitted by the Freundlich model, while the adsorption of Pb(II) and Cd(II) on T-ATP and MgO-ATP as well as Pb(II) adsorption on A-ATP agreed with the Langmuir model. All kinetic experimental data favored pseudo second-order model. The calculated thermodynamic parameters suggested that Pb(II) adsorption onto MgO-ATP was spontaneous and exothermic. When considering foreign metal ions, the three adsorbents all presented preferential adsorption for Pb (II). Chemical adsorption had a high contribution to the removal of Cd(II) and Pb(II) by modified attapulgite. In summary, the adsorption was greatly enhanced by the hydrothermal loading of MgO. It aimed to provide insights into the MgO-ATP, which could be able to efficiently remove Cd(II) and Pb(II) and serve as an economic and promising adsorbent for heavy metal-contaminated environmental remediation.  相似文献   

2.
Poly-L-histidine immobilized poly(glycidyl methacrylate) (PGMA) cryogel discs were used for the removal of heavy metal ions [Pb(II), Cd(II), Zn(II) and Cu(II)] from aqueous solutions. In the first step, PGMA cryogel discs were synthesized using glycidyl methacrylate (GMA) as a basic monomer and methylene bisacrylamide (MBAAm) as a cross linker in order to introduce active epoxy groups through the polymeric backbone. Then, the metal chelating groups are incorporated to cryogel discs by immobilizing poly-L-histidine (mol wt ≥ 5000) having poly-imidazole ring. The swelling test, fourier transform infrared spectroscopy and scanning electron microscopy were performed to characterize both the PGMA and poly-L-histidine immobilized PGMA [P-His@PGMA] cryogel discs. The effects of the metal ion concentration and pH on the adsorption capacity were studied. These parameters were varied between 3.0–6.0 and 10–800 mg/L for pH and metal ion concentration, respectively. The maximum adsorption capacity of heavy metal ions of P-His@PGMA cryogel discs were 6.9 mg/g for Pb(II), 6.4 mg/g for Cd(II), 5.6 mg/g for Cu(II) and 4.3 mg/g for > Zn(II). Desorption of heavy metal ions was studied with 0.1 M HNO3 solution. It was observed that cryogel discs could be recurrently used without important loss in the adsorption amount after five repetitive adsorption/desorption processes. Adsorption isotherms were fitted to Langmuir model and adsorption kinetics were suited to pseudo-second order model. Thermodynamic parameters (i.e. ΔH° ΔS°, ΔG°) were also calculated at different temperatures.  相似文献   

3.
Salih B  Denizli A  Kavaklı C  Say R  Pişkin E 《Talanta》1998,46(5):1205-1213
The dithizone-anchored poly (EGDMA-HEMA) microbeads were prepared for the removal of heavy metal ions (i.e. cadmium, mercury, chromium and lead) from aqueous media containing different amounts of these ions (25-500 ppm) and at different pH values (2.0-8.0). The maximum adsorptions of heavy metal ions onto the dithizone-anchored microbeads from their solutions was 18.3, Cd(II); 43.1, Hg(II); 62.2, Cr(III) and 155.2 mg g(-1) for Pb(II). Competition between heavy metal ions (in the case of adsorption from mixture) yielded adsorption capacities of 9.7, Cd(II); 28.7, Hg(II); 17.6, Cr(III) and 38.3 mg g(-1) for Pb(II). The same affinity order was observed under non-competitive and competitive adsorption, i.e. Cr(III)>Pb(II)>Hg(II)>Cd(II). The adsorption of heavy metal ions increased with increasing pH and reached a plateaue value at around pH 5.0. Heavy metal ion adsorption from artificial wastewater was also studied. The adsorption capacities are 4.3, Cd(II); 13.2, Hg(II); 7.2, Cr(III) and 16.4 mg g(-1) for Pb(II). Desorption of heavy metal ions was achieved using 0.1 M HNO(3). The dithizone-anchored microbeads are suitable for repeated use (for more than five cycles) without noticeable loss of capacity.  相似文献   

4.
研究废弃巴旦木壳对模拟废水中Pb、Cu和Cd的去除率。在单因素实验的基础上,采用响应面法对吸附剂投加量、吸附时间和pH值3因素进行优化。实验结果表明,Pb、Cu和Cd分别在最佳吸附吸附剂投加量0.4 g,吸附时间49.38 min,pH值为9.96;吸附剂投加量0.4 g,吸附时间49.91 min,pH值为10.13;吸附剂投加量0.4 g、吸附时间49.83 min、pH值为10.42的条件下,去除率分别为87.42%、73.49%和85.11%。采用偏最小二乘法(PLS)对Pb、Cu和Cd模拟混合试样吸附后的溶液测定的曲线进行拟合回归,计算得出吸附剂对Pb、Cu和Cd的去除率分别为83.2%、66.0%和83.3%。用PLS对吸附后的模拟废水样品进行计算分析,并间接得出巴旦木壳对Pb、Cd和Cu的去除率和建立Pb、Cd、Cu三组分同时测定的多元校正分析方法。  相似文献   

5.
Excessive heavy metals in the water constitute a health hazard to humans, yet it may be efficiently purified using adsorbents. Herein, for the first time, UiO-66-NH2 was modified by Glycidyl methacrylate (GMA) via microwave heating method to investigate its potential for adsorption of Pb(II) and Cd(II) metal ions. Synthesized MOF was characterized by TGA, XRD, BET, FE-SEM-EDX, and FTIR. The MOF has a huge surface area of 1144 m2/g, a mean pore diameter of 2.84 nm, and a total pore volume of 0.37 cm3/g. The effect of UiO-66-GMA performance was evaluated by investigating the impact of pH (1–9), contact time (0–200 min), initial metal ions concentration (20–1000 mg/L), temperature (25–55 °C), adsorbent dosage (0.5–3 g/L), and co existences of other metals was investigated on Pb(II) and Cd(II) percentage removal. Following an analysis of the adsorption isotherms, kinetics, and thermodynamics, the Temkin isothermal model showed an excellent fit with the adsorption data (R2 = 0.99). The adsorption process was a spontaneous endothermic reaction and kinetically followed the pseudo-second-order kinetics model. Microwave heating method produced highly crystalline small Zr-MOF nanoparticles with a short reaction time. It promoted the simple yet highly efficient synthesis of Zr-based MOFs, as shown by the reaction mass space-time yield. The adsorption capability of Pb to the presence of several polar functional groups, including as primary and secondary amines, ester, alkene, and hydroxyl groups. This adsorbent is a potential candidate for wastewater treatment due to its outstanding structural stability in acidic and basic solutions, high removal efficiency, and recyclability.  相似文献   

6.
A study was conducted concerning the preparation and application of a novel synthetic oxide adsorbent of MgO-SiO2 type. The material was prepared via a sol–gel route, utilizing magnesium ethoxide and tetraethoxysilane as precursors of magnesium oxide and silica respectively, and ammonia as a catalyst. The powder was comprehensively analyzed with regard to chemical composition (EDS method), crystalline structure, morphology, characteristic functional groups, electrokinetic stability and porous structure parameters (BET and BJH models). The synthesized oxide adsorbent is amorphous, with irregularly shaped particles, a relatively large surface area of 612 m2/g, and negative surface charge over almost the whole pH range. Comprehensive adsorption studies were performed to investigate the adsorption of Cd(II) and Pb(II) ions on the MgO–SiO2 oxide adsorbent, including evaluation of adsorption kinetics and isotherms, the effect of pH, contact time and mass of adsorbent. It was shown that irrespective of the conditions of the adsorption process, the synthesized MgO–SiO2 adsorbent exhibits slightly better affinity to lead(II) than to cadmium(II) ions (sorption capacity of 102.02 mg(Pb2+)/g and 94.05 mg(Cd2+)/g). The optimal time for removal of the analyzed metal ions was 60 min, although adsorption reached equilibrium within 10 min for Pb(II) and within 15 min for Cd(II) ions, which was found to fit well with a type 1 pseudo-second-order kinetic model. Additionally, adsorption efficiency was affected by the pH of the reaction system—better results were obtained for pH ≥7 irrespective of the type of metal ion.  相似文献   

7.
In the present study, we attempted to synthesize a novel sorbent from the starch modified montmorillonite for the removal of Pb(II), Cd(II), and Ni(II) ions from aqueous solutions. Structure and properties of the adsorbent were characterized by Fourier-transformed infrared(FT-IR) spectroscopy, X-ray diffraction (XRD), and Field emission scanning electron microscopic (FE-SEM) techniques. Batch experiments were confirmed through the effect of different conditions including pH, contact time, initial metal concentration and adsorbent dose. Specifically, the optimum value of adsorbent dose was achieved as 20 g/l for the removal of almost metal ions. The adsorption data was fitted with the optimum pH value as 5 for all experiments. The contact time at which the uptake of maximum metal adsorption was observed within 45 min for Pb(II), 90 min for Cd(II), and 60 min for Ni(II). In addition, it was revealed in our study that the equilibrium data obeyed the Langmuir model, and the adsorption kinetic followed a pseudo second-order rate model. Obtained results were noticeable for a modified phyllosilicate adsorbent, and with such a simple and low-cost modification for montmorillonite, the potential of this material as an economical and effective adsorbent for the removal of metal ions from aqueous solution was considerably elevated.  相似文献   

8.
Using persulfate/ascorbic acid redox system, a series of Cassia grandis seed gum-graft-poly(methylmethacrylate) samples were synthesized. The copolymer samples were evaluated for lead(II) removal from the aqueous solutions where the sorption capacities were found proportional to the grafting extent. The conditions for the sorption were optimized using copolymer sample of highest percent grafting. The sorption was found pH and concentration dependent, pH 2.0 being the optimum value. Adsorption of lead by the grafted seed gum followed a pseudo-second-order kinetics with a rate constant of 4.64 x 10(-5) g/mg/min. The equilibrium data followed the Langmuir isotherm model with maximum sorption capacity of 126.58 mg/g. The influence of electrolytes NaCl, Na(2)SO(4) on lead uptake was also studied. Desorption with 2 N HCl could elute 76% of the lead ions from the lead-loaded copolymer. The regeneration experiments revealed that the copolymer could be successfully reused for at least four cycles though there was a successive loss in lead sorption capacity with every cycle. The adsorbent was also evaluated for Pb(II) removal from battery waste-water containing 2166 mg/L Pb(II). From 1000 times diluted waste water, 86.1% Pb(II) could be removed using 0.05 g/20 ml adsorbent dose, while 0.5 g/20 ml adsorbent dose was capable of removing 60.29% Pb from 10 times diluted waste water. Optimum Pb(II) binding under highly acidic conditions indicated that there was a significant contribution of nonelectrostatic interactions in the adsorption process. A possible mechanism for the adsorption has been discussed.  相似文献   

9.
通过原子吸收光谱法研究了在不同pH、吸附剂量、Pb2+浓度和吸附时间条件下磷酸酯化改性梨渣吸附Pb2+的行为。结果表明:溶液初始pH 4.2时,Pb2+的吸附达到最大值;酯化梨渣≥10 g/L能除去Pb2+为30 mg/L溶液中的91%的Pb2+。酯化梨渣对Pb2+的吸附符合Langmuir等温模型,其最大吸附能力为43.99 mg/g。Pb2+达到吸附平衡的时间为40 min,准一级反应动力学方程可描述酯化梨渣对Pb2+的吸附过程。  相似文献   

10.
麦麸对重金属离子的吸附性能研究   总被引:4,自引:1,他引:4  
以麦麸为天然吸附剂,从水溶液中去除重金属离子.实验表明,麦麸对重金属离子有优良的吸附性能.在约10min内达到吸附平衡,吸附容量分别为:Hg2 70mg/g、Pb2 63mg/g、Cd2 21mg/g、Cu2 15mg/g、Ni2 13mg/g及Cr3 9.3mg/g;吸附速率很快,并且对上述金属离子有良好的选择性.  相似文献   

11.
《中国化学快报》2021,32(10):3169-3174
In this study, Si-doped ferrihydrite (Si-Fh) was successfully synthesized by a simple coprecipitation method for removal of heavy metals in water. Subsequently, the physicochemical properties of Si-Fh before and after adsorption were further studied using several techniques. The Si-Fh exhibited good adsorption capacity for heavy metal ions such as Pb(II) and Cd(II). The maximum adsorption capacities of lead and cadmium are respectively 105.807, 37.986 mg/g. The distribution coefficients of the materials for Pb(II) and Cd(II) also showed a great affinity (under optimal conditions). Moreover, it was found that the adsorption fit well with the Freundlich isotherm and pseudo-second-order kinetic model which means this was a chemical adsorption process. It can be conducted from both characterization and model results that adsorption of Pb(II) and Cd(II) was mainly through the complexation interaction of abundance oxygen functional groups on the surface of Si-Fh. Overall, the Si-Fh adsorbents with many superiorities have potential for future applications in the removal of Pb(II) and Cd(II) from wastewater.  相似文献   

12.
《中国化学快报》2021,32(10):3231-3236
A magnesium doped ferrihydrite-humic acid coprecipitation (Mg-doped Fh-HA) was synthesized by coprecipitation method. The removal of heavy metals such as Pb(II) and Cd(II) was assessed. The isotherms and kinetic studies indicated that the Mg-doped Fh-HA exhibited a remarkable Pb(II) and Cd(II) sorption capacity (maximum 120.43 mg/g and 27.7 mg/g, respectively.) in aqueous solution. The sorption of Pb(II) and Cd(II) onto best fitted pseudo-second-order kinetic equation and Langmuir model. The adsorption mechanism of Mg-doped Fh-HA on Pb(II) and Cd(II) involves surface adsorption, surface complexation and surface functional groups (such as carboxyl group, hydroxyl group). In addition, ion-exchange and precipitation cannot be ignored. The Mg-doped Fh-HA is a low-cost and high-performance adsorption material and has a wide range of application prospects.  相似文献   

13.
Modified crosslinked polyacrylamides having different functional groups prepared by transamidation reaction in aqueous and non‐aqueous medium and by Hofmann reaction were used as chelating agents for removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions at different pH values. Under non‐competitive conditions, polymers adsorbed different amounts of metal ions, depending on their functional groups and swelling abilities. The metal ion adsorption capacities of polymers changed between 0.11–1.71 mmol/g polymer. Under competitive conditions, while the polymers having mainly secondary amine groups were highly selective for Cu(II) ions (99.4%), those having mainly secondary amide and carboxylate groups have shown high selectivity towards Pb(II) ions (99.5%). The selectivity towards Cu(II) ion decreased and Pb(II) ion selectivity increased by the decrease of the pH of the solutions. The high initial adsorption rate (<10 min) suggests that the adsorption occurs mainly on the polymer surface. A regeneration procedure by treatment with dilute HCl solution showed that the modified polymers could be used several times without loss of their adsorption capacities.  相似文献   

14.
In the present study, Pb(II) removal efficiency of Strychnos potatorum seed powder (SPSP) from aqueous solution has been investigated. Batch mode adsorption experiments have been conducted by varying pH, contact time, adsorbent dose and Pb(II) concentration. Pb(II) removal was pH dependent and found to be maximum at pH 5.0. The maximum removal of Pb(II) was achieved within 360 min. The Lagergren first-order model was less applicable than pseudo-second-order reaction model. The equilibrium adsorption data was fitted to Langmuir and Freundlich adsorption isotherm models to evaluate the model parameters. Both models represented the experimental data satisfactorily. The monolayer adsorption capacities of SPSP as obtained from Langmuir isotherm was found to be 16.420 mg/g. The FTIR study revealed the presence of various functional groups which are responsible for the adsorption process.  相似文献   

15.
The present work investigates the influence of acid activation of montmorillonite on adsorption of Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) from aqueous medium and comparison of the adsorption capacities with those on parent montmorillonite. The clay-metal interactions were studied under different conditions of pH, concentration of metal ions, amount of clay, interaction time, and temperature. The interactions were dependent on pH and the uptake was controlled by the amount of clay and the initial concentration of the metal ions. The adsorption capacity of acid-activated montmorillonite increases for all the metal ions. The interactions were adsorptive in nature and relatively fast and the rate processes more akin to the second-order kinetics. The adsorption data fitted both Langmuir and Freundlich isotherms, indicating that strong forces were responsible for the interactions at energetically nonuniform sites. The Langmuir monolayer capacity of the acid-activated montmorillonite is more than that of the parent montmorillonite (Cd(II): 32.7 and 33.2 mg/g; Co(II): 28.6 and 29.7 mg/g; Cu(II): 31.8 and 32.3 mg/g; Pb(II): 33.0 and 34.0 mg/g; and Ni(II): 28.4 and 29.5 mg/g for montmorillonite and acid-activated montmorillonite, respectively). The thermodynamics of the rate processes showed the adsorption of Co(II), Pb(II), and Ni(II) to be exothermic, accompanied by decreases in entropy and Gibbs free energy, while the adsorption of Cd(II) and Cu(II) was endothermic, with an increase in entropy and an appreciable decrease in Gibbs free energy. The results have established the potential use for montmorillonite and its acid-activated form as adsorbents for Cd(II), Co(II), Cu(II), Ni(II), and Pb(II) ions from aqueous media.  相似文献   

16.
Two types of magnetite (Fe3O4) nanoparticles were investigated as adsorbents for the simultaneous removal of Pb(II), Cd(II), and As(III) metal ions from aqueous solution. Magnetite nanoparticles were prepared by two synthesis procedures, both using water as solvent, and are referred to as conventional Fe3O4 nanoparticles and green Fe3O4 nanoparticles. The latter used Citrus limon (lemon) aqueous peel extract as the surfactant. Box–Behnken experimental design was used to investigate the effects of parameters such as initial concentration (20–150?mg?L?1), pH (2–9), and biomass dosage (1–5?g?L?1) on the removal of Pb(II), Cd(II), and As(III) ions. The optimum parameters for removal of the studied metal ions from aqueous solutions, including the initial ion concentration (20?mg?L?1), pH (5.5) and adsorbent dose (5?g?L?1), were determined. The pseudosecond-order model exhibited the best fit for the kinetic studies, while adsorption equilibrium isotherms were best described by Langmuir and Freundlich models. The optimum conditions were applied for the treatment wastewater. The removal efficiencies of Pb(II), Cd(II), and As(III) using the conventional and green synthesized Fe3O4 nanoparticles were 59.4?±?4.3, 18.7?±?1.9 and 17.5?±?1.6, and 98.8?±?5.6, 46.0?±?1.3, and 48.2?±?2.6%, respectively. These results demonstrate the potential of magnetite nanoparticles synthesized using C. limon peel extract as highly efficient adsorbents for the removal of Pb(II), Cd(II), and As(III) ions from aqueous solution.  相似文献   

17.
In this study, the preparation of magnetic Fe3O4/ZIF-8 (MFZ) and its adsorption properties for Cd(II) from water were investigated. Various characterizations demonstrate that the as-prepared MFZ has well magnetic-separation performance and thermal stability. In batch adsorption tests, the effects of pH, initial concentration, and adsorbent dosage were evaluated. According to the findings, when the pH is 7 and the dosage is 150 mg/L, the adsorption capacity for a 40 mg/L Cd(II) solution reaches 102.3 mg/g in 180 min. The Cd(II) adsorption processes was found to correspond to pseudo-first-order kinetics and Langmuir model according to the adsorption kinetics and isotherms. The Langmuir model predicted a maximal saturation adsorption capacity of 160.26 mg/g at 298 K. Thermodynamic analysis revealed that the Cd(II) adsorption is an endothermic, spontaneous process. Ion exchange, coordination reaction, and electrostatic interaction are all involved in Cd(II) adsorption by MFZ. The optimum conditions for Cd(II) adsorption were proposed and confirmed in accordance with the results of the response surface optimization experiments. Furthermore, regeneration tests demonstrate the great repeated regeneration ability of MFZ. According to the anticipated production cost, treating wastewater with a Cd(II) concentration of 40 mg/L would cost roughly US$ 8.35/m3. MFZ showed good potential for Cd(II) removal from water.  相似文献   

18.
Pb(II)-Cd(II) double-imprinted electrospun crosslinked chitosan nanofibers (Pd/Cd-DIECCNs) were prepared by combining electrospinning and ion-imprinting methods, which showed excellent adsorption capacity for both Pb(II) and Cd(II).  相似文献   

19.
研究废弃巴旦木壳对模拟废水中Pb、Cu和Cd的去除率。在单因素试验的基础上,采用响应面法对吸附剂投加量、吸附时间和pH值3因素进行优化。实验结果表明,最佳吸附条件为Pb:为吸附剂投加量0.4g、吸附时间49.38min、pH值为9.96;Cu:吸附剂投加量0.4g、吸附时间49.91min、pH值为10.13;Cd:吸附剂投加量0.4g、吸附时间49.83min、pH值为10.42;在此条件下,Pb、Cu和Cd的去除率分别为87.42%、73.49%和85.11%。采用偏最小二乘法(PLS)对Pb、Cu和Cd模拟混合试样吸附后的溶液进行同时测定,计算得出吸附剂对Pb、Cu和Cd的去除率分别为83.2%、66.0%和83.3%。  相似文献   

20.
Removal of heavy metals by using adsorption on alumina or chitosan   总被引:4,自引:0,他引:4  
The removal of heavy metals from wastewater by using activated alumina or chitosan as adsorbers was evaluated. Cd(II) and Cr(III) were employed as models of the behaviour of divalent and trivalent metal ions. The adsorption of Cd(II) and Cr(III) onto the adsorbers evaluated was studied as a function of pH, time, amount of adsorber, concentration of metal ions and sample volume. A 0.4-g portion of activated alumina can retain 0.6 mg Cr(III) and 0.2 mg Cd(II) from 20 mL sample adjusted at pH 4 and stirred for 30 min. It is therefore possible to totally decontaminate 500 mL of a waste containing 5 mg L(-1) Cd(II) and Cr(III) with 10 g alumina. On the other hand, 0.4 g chitosan can totally decontaminate 20 mL of a pH 5 solution containing up to 50 mg L(-1) Cd(II) and Cr(III). A 99.2+/-0.1% retention of Cd(II) and 83+/-1% retention of Cr(III) was obtained from 500 mL of a laboratory waste. The aforementioned strategies were applied for the minimization of analytical chemistry teaching laboratories and atomic spectrometry laboratory wastes. On comparing both adsorbers it can be concluded that chitosan is more preferable than alumina due to the reduced price of chitosan and the absence of side-pollution effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号