首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman and IR spectra of polycrystalline Ni3Pb(P2O7)2 and Co3Pb(P2O7)2 have been recorded and analyzed. The internal modes are assigned in terms of PO3 and POP vibrations. The results point to a bent POP bridge configuration in Co3Pb(P2O7)2 as in Ni3Pb(P2O7)2. In the cobalt compound, the P2O4−7 ions are distorted. Non-coincidence of the majority of the Raman and IR bands confirms a centrosymmetric structure for Ni3Pb(P2O7)2, and Co3Pb(P2O7)2. The POP bridge angle is slightly higher in the cobalt compound than in the nickel compound.  相似文献   

2.
The calcium salts Ca2P2O6 · 2H2O ( 1 ) and [Ca(H2O)3(H2P2O6)] · 0.5(C12H24O6) · H2O ( 2 ) were prepared and structurally characterized by single‐crystal X‐ray diffraction. Compound 1 crystallizes in the orthorhombic space group Pbca and compound 2 in the monoclinic space group P21/n. The crystal structure of compound 1 consists of chains of edge‐sharing [CaO7] polyhedra linked by hypodiphosphate(IV) anions to form a three‐dimensional network. The crystal structure of compound 2 consists of alternated layers of crown ether and water molecules and respective ionic units. Within the layers of ionic units the Ca2+ cations are octahedrally coordinated by three monodentate dihydrogenhypodiphosphate(IV) anions and three water molecules. The IR/Raman spectra of the title compounds were recorded and interpreted, especially with respect to the [P2O6]4– and [H2P2O6]2– groups. The phase purity of 2 was verified by powder diffraction measurements.  相似文献   

3.
We have studied the thermal behaviour under atmospheric pressure of isotypic tetrahydrate cyclotriphosphates MII(NH4)4(P3O9)2x4H2O (M II=Cu, Ni and Co), between 25 and 1400°C, by X-ray diffraction, thermal analyses (TG and DTA) and infrared spectrometry. This study shows that the series of the compounds MII(NH4)4(P3O9)2x4H2O (M II=Cu, Ni and Co) after elimination of water, in two different stages, and ammonia leads, at 400°C to cyclotetraphosphate M2 IIP4O12 crystallized and to a thermal residue with a formula H4P4O12 which undergoes under a thermal degradation by evolving water and pentoxide phosphorus. The kinetic characteristics of the dehydration and elimination of ammonia have been determinated. The vibrational spectra of Cu(NH4)4(P3O9)2x4H2O were examined and interpreted, in the domain of the valency frequencies, on the basis of the crystalline structure of its isotypic compound Co(NH4)4(P3O9)2x4H2O whose cycle has the site symmetry C1, of our results of the calculation of the IR frequencies and the successive isotopic substitutions of the equivalent atoms (3P, 3Oi and 6Oe belonging to the P3Oi3Oe6 ring) of the P3O9 3− cycle with high symmetry D3h. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Averievite-type compounds with the general formula (MX)[Cu5O2(TO4)], where M = alkali metal, X = halogen and T = P, V, have been synthesized by crystallization from gases and structurally characterized for six different compositions: 1 (M = Cs; X = Cl; T = P), 2 (M = Cs; X = Cl; T = V), 3 (M = Rb; X = Cl; T = P), 4 (M = K; X = Br; T = P), 5 (M = K; X = Cl; T = P) and 6 (M = Cu; X = Cl; T = V). The crystal structures of the compounds are based upon the same structural unit, the layer consisting of a kagome lattice of Cu2+ ions and are composed from corner-sharing (OCu4) anion-centered tetrahedra. Each tetrahedron shares common corners with three neighboring tetrahedra, forming hexagonal rings, linked into the two-dimensional [O2Cu5]6+ sheets parallel to (001). The layers are interlinked by (T5+O4) tetrahedra (T5+ = V, P) attached to the bases of the oxocentered tetrahedra in a “face-to-face” manner. The resulting electroneutral 3D framework {[O2Cu5](T5+O4)2}0 possesses channels occupied by monovalent metal cations M+ and halide ions X. The halide ions are located at the centers of the hexagonal rings of the kagome nets, whereas the metal cations are in the interlayer space. There are at least four different structure types of the averievite-type compounds: the P-3m1 archetype, the 2 × 2 × 1 superstructure with the P-3 space group, the monoclinically distorted 1 × 1 × 2 superstructure with the C2/c symmetry and the low-temperature P21/c superstructure with a doubled unit cell relative to the high-temperature archetype. The formation of a particular structure type is controlled by the interplay of the chemical composition and temperature. Changing the chemical composition may lead to modification of the structure type, which opens up the possibility to tune the geometrical parameters of the kagome net of Cu2+ ions.  相似文献   

5.
Thermal decomposition of three tetravanadates, [MII(phen)3]2V4O12·phen·22H2O, where M II is Co (1), Ni (2), Cu (3) and phen is 1,10-phenanthroline, was studied by dynamic method (for 1 and 2) or isothermally (for 3). The thermal decomposition of the studied compounds is a multi-step process which involve: discontinuous dehydration, release of uncoordinated, and of coordinated phenanthroline molecules. In course of the latter process, a phase transition of the cyclo-tetravanadates to polymeric metavanadates occurred. Metavanadates with chain structure of the anion were the final decomposition products of all tetravanadates studied. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
7.
Single crystals of a new cyclohexaphosphate, are synthesised and investigated by X-ray diffraction. This compound crystallizes in the triclinic system with the space group P-1 and cell parameters a=7.773(4), b=9.238(3), c=18.532(7) Å, α=88.57(3), β=88.10(4), γ=67.35(4)°, Z=1 and V=1227(1) Å3. The three-dimensional network is built up from parallel (0 0 1) layers of [CdP6O18(H2O)6]4− between which the organic molecules are inserted. The Cd atoms, in 1(a) sites, adopt an octahedral coordination. The 3,4-xylidinium cations exercise an electrostatic interaction on the inorganic anion and establish strong H-bonds with their oxygen atoms.  相似文献   

8.
9.
Four new dioxouranium(VI) complexes, [UO2(acac-o-phdn)(L)] where L?=?H2O, py, DMF and Et3N, with the tetradentate dibasic Schiff base (acac-o-phdn), derived from condensation of acetylacetone with o-phenylene diamine have been synthesized. The infrared spectra were obtained and full assignments of all the observed vibrations are proposed on the basis of C2v symmetry for H2O and py complexes and Cs for the other two complexes, respectively. The bond stretching force constant and bond length of the U=O bond for the four complexes were calculated. Differential thermal analysis (DTA) and thermogravimetric (TG) analysis of the complexes were also carried out.  相似文献   

10.
The electron charge distribution in a strongly twisted push-pull ethylene [PPE, 3-(1,3-diisopropyl-2-imidazolidinylidene)-2,4-pentanedione] has been determined by low temperature (T = 21 K) single-crystal X-ray diffraction analysis. The derived electronic properties are consistent with a zwitterionic molecule, as indicated by a charge transfer of 0.82(16) e from the push to the pull moieties and a charge polarization of 0.29(7) e on the olefinic bond. A dipole moment of 12(3) D has been determined, which compares well with ab initio theoretical results in terms of both modulus and orientation. The second moments, which have also been obtained with good precision, characterize PPE as a highly quadrupolar molecule. The special electronic features of the molecule confer particular topological properties to the electron density distribution, as evidenced by comparison with "standard" organic molecules. The crystallographic asymmetric unit of the present system includes one water molecule, which is hydrogen bonded to PPE. Its topological properties have also been investigated, together with an analysis of the hydrogen bonds involved.  相似文献   

11.
The crystal structures of Na2Mg3(OH)2(SO4)3 · 4H2O and K2Mg3(OH)2(SO4)3 · 2H2O, were determined from conventional laboratory X‐ray powder diffraction data. Synthesis and crystal growth were made by mixing alkali metal sulfate, magnesium sulfate hydrate, and magnesium oxide with small amounts of water followed by heating at 150 °C. The compounds crystallize in space group Cmc21 (No. 36) with lattice parameters of a = 19.7351(3), b = 7.2228(2), c = 10.0285(2) Å for the sodium and a = 17.9427(2), b = 7.5184(1), c = 9.7945(1) Å for the potassium sample. The crystal structure consists of a linked MgO6–SO4 layered network, where the space between the layers is filled with either potassium (K+) or Na+‐2H2O units. The potassium‐bearing structure is isostructural to K2Co3(OH)2(SO4)3 · 2(H2O). The sodium compound has a similar crystal structure, where the bigger potassium ion is replaced by sodium ions and twice as many water molecules. Geometry optimization of the hydrogen positions were made with an empirical energy code.  相似文献   

12.
Jahn-Teller Distortions of Transition Metal Ions in Tetrahedral Coordination — The Structures of Cat[MII(NCS)4]II (MII: Co, Ni, Cu) and of Mixed Crystals MIICr2O4(MII: Zn? Ni, Zn? Cu, Cu? Ni) of the Spinel Type The structure determination of compounds Cat[MII(NCS)4] with Cat = p-xylylenebis(triphenylphosphonium)2+ and MII = Co, Ni, Cu [space group P21/n, Z = 4] yielded pseudotetrahedral MIIN4-polyhedra, which are distorted by packing forces and vibronic coupling effects of the Jahn-Teller type. Spinel mixed crystals with MII = Zn? Ni, Zn? Cu, Ni? Cu in the tetrahedral sites exhibit phase transition to tetragonal and o-rhombic structures, induced by cooperative Jahn-Teller interactions. The distortion symmetries of the MIIN4 and MIIO4 tetrahedra are analysed on the basis of the respective electronic groundstate and the possible Jahn-Teller active vibrational modes.  相似文献   

13.
Cuprate manganites of the composition LaM 2 II CuMnO6 (MII = Mg, Ca, Sr, Ba) were synthesized from lanthanum, copper(II), and manganese(III) oxides and alkaline-earth metal carbonates by high-temperature solid-phase synthesis. By grinding the produced substances in a ball mill, their nanostructured particles were obtained, the sizes of which were determined with an electron microscope. Indexing the X-ray powder diffraction patterns of the cuprate manganites established that all of them crystallize in the cubic system with the following unit cell parameters: LaMg2CuMnO6: a = 15.523 ± 0.033 Å, Z = 6, V 0 = 3740.48 ± 0.10 Å3, V el.cell 0 = 623.41 ± 0.03Å3, ρX-ray = 5.81 g/cm3, and ρpycn = 5.75 ± 0.06 g/cm3; LaCa2CuMnO6: a = 15.422 ± 0.058 Å, Z = 4, V 0 = 3667.94 ± 0.174 Å3, V el.cell 0 = 916.48 ± 0.04 Å3, ρX-ray = 3.77 g/cm3, and ρpycn = 3.72 ± 0.05 g/cm3; LaSr2CuMnO6: a = 15.275 ± 0.049 Å, Z = 4, V 0 = 3564.05 ± 0.27 Å3, V el.cell 0 = 891.01 ± 0.07 Å3, ρX-ray = 4.31 g/cm3, and ρpycn = 4.25 ± 0.05 g/cm3; and LaBa2CuMnO6: a = 15.589 ± 0.029 Å, Z = 4, V 0 = 3788.39 ± 0.09 Å3, V el.cell 0 = 947.10 ± 0.02 Å3, ρX-ray = 4.74 g/cm3, and ρpycn = 4.70 ± 0.05 g/cm3. The data of an IR spectroscopic study of the cuprate manganites were presented.  相似文献   

14.
To investigate the behaviour of the As4S4 molecule within a crystal-chemical environment differing from realgar, α-As4S4, and its high-temperature polymorph, β-As4S4, the effects of the light exposure on the structure of the (HgBr2)3(As4S4)2 adduct have been studied. Differently from the cases previously studied, the action of the light filtered using a 550 nm long-wavelength pass filter did not produce any evident effect on the unit-cell. On the other hand, employing the 440 nm long-wavelength pass filter, remarkable variations of the unit-cell parameters were observed. In particular, an increase of the a, c, and β, and a decrease of the b parameter, producing on the whole an expansion of the unit-cell volume, is observed as a function of the light exposure times. Structure refinements indicated that the increase of the unit-cell volume is to ascribe to the formation of an increasing fraction (up to 20%) of pararealgar-type replacing the realgar-type molecule. Further light-exposure did not cause any further increase of the lattice parameters. On the contrary, a decrease of the unit-cell volume occurred by keeping the crystal in the dark (46 days): due to the loss of the crystallinity, only the core of the crystal, less altered and with smaller unit-cell volume, contributes to the diffraction effects. Micro-Raman spectra were collected on crystals exposed to the above mentioned wavelength light for increasing times. The peak at 275(±1) cm−1 whose intensity increases as a function of the exposure time confirms the transition from a realgar- to a pararealgar-type molecule in the (HgBr2)3(As4S4)2 adduct. Relativistic DFT-GGA ab initio band structure calculations reveal a direct band gap of 2.04 eV and quite flat valence and conduction bands around the Fermi level. According to analyses of the atomic orbital contributions to the electronic band structures the highest occupied states are attributed to non-bonding p-states of As.  相似文献   

15.
Evaporation of aqueous ammonia solutions of K7[Mo4Te4(CN)12]·12H2O or K6[W4Te4(CN)12]·5H2O, copper(ii) chloride, and ethylenediamine afforded the isostructural heterometallic complexes [{Cu(en)2}2{Cu(en)2(NH3)}{M4Te4(CN)12}]·5H2O (M = Mo or W), which were characterized by IR and ESR spectroscopy and X-ray diffraction analysis.  相似文献   

16.
17.
18.
The title compounds (S)-methyl-2-(4-R-phenylsulfonamido)-3-(1H-indol-3- yl)propanoate (R = H (1), Cl (2)) have been synthesized and their crystal structures also have been determined by X-ray single-crystal diffraction. Compound 1 (C18H18N2O4S) belongs to orthorhombic, space group P212121 with a = 9.6348(14), b = 11.1517(17), c = 16.412(3) A, V = 1763.4(5) A^3, Mr = 358.40, Z = 4, De = 1.350 g/cm^3,/t = 0.209 mm^-1, F(000) = 752, R = 0.0348 and wR = 0.0714. Compound 2 (CI8H17ClN2O4S) crystallizes in orthorhombic, space group P212121 with a = 9.3128(14), b = 10.9655(16), c = 17.783(3) A, V = 1815.9(5) A^3, Mr = 392.85, Z = 4, De = 1.437 g/cm^3, p = 0.352 mm^-1, F(000) = 816, R = 0.0389 and wR = 0.0845. The absolute structure Flack parameters X of compounds 1 and 2 are -0.03(8) and -0.06(7), respectively. X-ray analysis reveals that the crystal structures of these two compounds both involve two intermolecular N-H…O hydrogen bond's.  相似文献   

19.

Crystal growth and characterization by X-ray diffraction and NMR spectroscopy of a new p-phenylenediamonium diphosphate [p-NH3 C 6 H 4 NH 3]H 2 P 2 O 7 are reported. This compound crystallizes in a triclinic unit cell P1 with the parameters a = 7.130(3), b = 9.047(3), c = 9.350(2) Å, α = 133.44(2)°, β = 95.02(2)°, γ = 107.11(4)°, Z = 2, V = 514.3(15) Å3, and D x = 1.848 g.cm? 3. The crystal structure has been solved and refined to R = 0.0273, using 3678 independent reflections. The atomic arrangement is build up by infinite ribbons of [H2 P 2 O 7] 2? anions, extending along the a-direction at y = 1/2. Between these ribbons are located the p-phenylenediammonium entities, which form hydrogen bonds N─H…O with some external oxygen atoms of phosphoric groups. Crystallographic results are correlated with that of the solid state 13C and 31P MAS NMR spectroscopy.  相似文献   

20.
The X-ray absorption spectra (XAS) of LiCoO2, LiCo1/2Ni1/2O2 and LiNiO2 were examined together with X-ray diffraction (XRD). Co and Ni K-edge XANES spectra of LiCo1/2Ni1/2O2 are quite similar to that of LiCoO2 or LiNiO2, suggesting that electronic states of Co and Ni in LiCo1/2Ni1/2O2 are Co3+ and Ni3+. Analytical results of Co and Ni K-edge EXAFS oscillations on the first coordination shell of nickel and cobalt ions in LiCo1/2Ni1/2O2 indicate that the local environment around the targeted species is the same as that in LiCoO2 or LiNiO2. Since there is no doubt about the crystal and electronic structures of LiCoO2 and LiNiO2, the results indicate that LiCo1/2Ni1/2O2 consists of low-spin states of Co3+ and Ni3+ distributed at equivalent positions in triangular lattice of sites forming homogeneous transition metal oxide layers. Thus, XAS complements XRD in describing solid solution LiCo1/2Ni1/2O2 of LiCoO2 and LiNiO2. The electrochemical behaviors of LiCoO2, LiCo1/2Ni1/2O2 and LiNiO2 are also restated and the effects of the formation of solid solution on the change in lattice dimension during topotactic electrochemical reactions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号