首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This investigation reports a one pot preparation of poly(meth)acrylate grafted EPDM via reverse ATRP and evaluation of their physical and mechanical properties. The graft copolymerization of 2-ethylhexyl acrylate and methyl methacrylate was carried out from EPDM using reverse ATRP in toluene at 90 °C using CuBr2 as catalyst in combination with PMDETA as ligand and AIBN as thermal initiator. The grafted EPDMs were separated from the reaction mixture, purified and then characterized by FT-IR, 1H NMR, DMA and TGA analyses. Surface energies and tensile properties were evaluated by Goniometer and UTM respectively. Acrylate grafted EPDMs showed better thermal stability, better tensile property, whereas methacrylate grafted EPDMs showed higher surface energy and better oil resistance property than the pristine EPDM. Surface morphologies of grafted EPDMs were analyzed by AFM and SEM analyses. This one pot grafting approach led to very high grafting percentage without undesirable homopolymerization and gelation.  相似文献   

2.
In this study, nano silver-doped activated carbon (Ag/C) acted as an inorganic additive and was blended with a polysulfone (PSF) matrix in a tetrahydrofuran (THF) solution, thereby forming nano silver- doped activated carbon/polysulfone (Ag/C/PSF) composites. Subsequently, the silver content and characterization of the Ag/C were identified using energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The FTIR, XRD, EDS and SEM were used to characterize the structure and morphology of the Ag/C/PSF composites. The FTIR spectra analysis revealed that adding a small volume of Ag/C in a PSF matrix did not substantially affect the functional groups of the matrix. The XRD results showed that the characteristic crystallization peaks of Ag/C/PSF (2θ = 26°) increased as the Ag/C content increased. The EDS results revealed that silver elements were inlaid into Ag/C/PSF composites, and the SEM results demonstrated strong interfacial interaction between the Ag/C particles and PSF matrix. The results of thermogravimetric analysis and differential scanning calorimetry appeared that adding Ag/C particles increased the thermal decomposition temperature and glass transition temperature of the Ag/C/PSF composites. From a stress–strain analysis, the added Ag/C particles enhanced the tensile strength of the PSF matrix. The results of contact-angle and atomic-force microscopy measuring showed that the hydrophobicity and surface roughness increased when Ag/C content increased. The antibacterial test results revealed that the Ag/C/PSF composites exhibited excellent antibacterial activity against both Staphylococcus aureus and Escherichia coli. In addition, the electrical conductivity measurements showed that volume resistivity of the Ag/C/PSF composites decreased with the amount of Ag/C increase.  相似文献   

3.
Abstract

In the study, dental composites of color A2 using Bis-GMA/UDMA/TEGDMA resins (ratios 70/10/20), and silica filler (70%wt, 75%wt, and 80%wt) which is a hybrid of two silica types in nano and micro dimensions were made using two different photoinitiators namely BAPO and camphorquinone. The optimum photoinitiator was selected based on the mechanical tests results after which the composites were subjected to the following tests: FTIR to evaluate polymerization degree, microhardness test, UTM, and SEM micrographs were taken to analyze the surface fracture of samples. The results of photoinitiator selection (flexural strength test) is 36.54?MPa, 37.62?MPa, and 75.08?MPa for BAPO?+?camphorquinone, camphorquinone, and BAPO respectively. The results show that the BAPO photoinitiator exhibits better results over camphorquinone and also BAPO/camphorquinone initiator systems. Then after choosing the photoinitiator system composites with different filler contents show higher mechanical strength than existing dental composites. The results of the mechanical tests for the composites with different filler contents synthesized after initiator system selection were significantly higher than the values specified in ISO 4049:2009 (102?MPa over 80?MPa). FTIR results indicate that the degree of conversion in these composite is 25.41%, 37.68, and 40.94% for composites with different filler amounts.  相似文献   

4.
The aim of the present work was to analyse the degradation rate of PGLA copolymer depending on a modifier (hydroxyapatite, carbon fibres) under in vivo conditions (rabbit femoral bone). Also, the influence of the implantation site on the degradation rate of a copolymer (rabbit mandible and femoral bone) was analyzed as a continuation of our previous research.The structural and phase changes of poly(lactide-co-glycolide) and its composite with hydroxyapatite and carbon fibres were determined on the basis of IR and NMR spectroscopy. Additionally, microscopic observations with elemental analyses were performed (SEM, EDS).The addition of a modifying phase accelerates implant degradation. However, modifying additives promote regeneration of the treated bone tissue simultaneously with faster polymer degradation. The compositions of a copolymer and composites are variable during degradation.The process of copolymer degradation in the femoral bone is much faster in comparison with previous studies on mandibles. This may be caused by higher activity of osteoblasts, differences in blood supply and oxygenation of tissue as well as different anatomical structure of these two kinds of bones.FTIR and NMR methods allow for following the changes occurring in the resorbable copolymer structure with time and they are very useful tools in analyzing the degradation mechanism and rate of aliphatic polyesters and their composites.  相似文献   

5.
SBR/unmodified HNT composites were prepared by open-mill mixing and vulcanization. The results showed that HNT could decrease the scorch and optimum cure time, and play a significant role in reinforcing SBR vulcanizates. Mechano-chemical grafting at the interface between HNT and SBR was investigated by using infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), solid-state 13C NMR spectra and bonded rubber content, etc. The results showed the shearing force during the mixing process can impel the grafting reaction of SBR onto the surfaces of HNT, which leads to interfacial chemical bonding between phenyl’s α-H of SBR and the surface groups of HNT with Si-OH or Al-OH. Thus, the mechanical properties of the composites were significantly enhanced.  相似文献   

6.
Poly(1,8-octanediol-co-citrate)(POC) represents a new promising biocompatible and biodegradable polyester that has been extensively investigated for soft tissue engineering. However, the poor mechanical performance and poor bioactivity limit its application in bone regeneration. In this study, a series of POC/bioactive glasses(BG) composites were developed using 45 S5 Bioglass~ and a phytic acidderived bioactive glass(referred as PSC). The results indicated that calcium in BG could enhance the crosslinking of the POC/BG composites by forming calcium dicarboxylate bridges and thus improve their mechanical performances. When PSC were used, the composites exhibited significantly better mechanical properties compared to composites with 45 S5 Bioglass~. For example, by incorporating70 wt% PSC, the compressive strength of POC/PSC composites could be improved to approximately50 MPa and modulus 1.3±0.1 GPa. Furthermore, all these POC/PSC composites showed good in vitro bioactivity and cellular biocompatibility. Histology results in femoral condyle defects of Sprague-Dawley rats indicated that the POC/PSC samples integrated well with surrounding tissues and stimulated bone regeneration. The improved mechanical properties and bioactivity of POC/PSC composites make them promising for potential application in bone regeneration.  相似文献   

7.
Rosin polymer–grafted lignin composites were prepared via “grafting from” atom transfer radical polymerization (ATRP) with the aid of 2‐bromoisobutyryl ester‐modified lignin as macroinitiators. Three different monomers derived from dehydroabietic acid (DA) were used for execution of grafting from ATRP, while DA was separately attached onto lignin by a simple esterification reaction. Kinetic studies indicated controlled and “living” characteristics of all monomer polymerizations. Thermal studies indicated that rosin polymer–grafted lignin composites exhibited glass transition temperatures in a broad temperature range from ~20 to 100°C. The grafting of both DA and rosin polymers significantly enhanced hydrophobicity of lignin. Static contact angle measurement of water droplets showed ~90° for all these rosin modified lignin composites. X‐ray photoelectron spectroscopy demonstrated that the surface of rosin–lignin composites was dominated with chemical compositions originating from the hydrocarbon rich rosin moiety. The impartation of hydrophobicity of rosin into lignin provided excellent water resistance of this class of renewable polymers, as all rosin‐modified lignin composites showed water uptake below 1.0 wt %. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
This work aims to evaluate the potential of a bioresorbable composite as material for bone regeneration. Surface‐modified calcium carbonate whiskers (CCWs) were prepared by grafting of ethylene glycol (EG) using 1,6‐hexamethylene diisocyanate as coupling agent, followed by ring‐opening polymerization of l ‐lactide initiated by the hydroxyl group of EG. The resulting PLLA‐EG‐g‐CCW was used as filler to reinforce a bioresorbable terpolymer, poly(l ‐lactide‐co‐trimethylene carbonate‐co‐glycolide) (PLTG). The mechanical properties and thermal stability of the PLTG/PLLA‐EG‐g‐CCW composites were greatly improved. Compared with neat PLTG, a 39.3% increase in tensile strength and 26.7% increase in elongation at break were obtained for the composite with 2 wt% PLLA‐EG‐g‐CCW filler. This was assigned to the reinforcement effect of evenly dispersed PLLA‐EG‐g‐CCW in the polymeric matrix. In fact, entanglement of PLLA grafts at the surface of PLLA‐EG‐g‐CCW with PLTG chains results in a homogeneous distribution of the filler in the matrix. Thus, the composites are simultaneously strengthened and toughened. The cytocompatibility of the materials was evaluated from cell morphology and 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay using L929 mouse fibroblast cell line. The results indicate that the composite presents very low cytotoxicity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this study was to synthesize hydrophobic cellulose nanofibers (CNFs) using different chemical treatments including polymer and molecular grafting. For polymer grafting, immobilizing poly (butyl acrylate) (PBA) and poly (methyl methacrylate) (PMMA) on CNFs were implemented by the free radical method. Also, acetyl groups were introduced directly onto the CNFs surface by acetic anhydride for molecular grafting. The gravimetric and X-ray photoelectron spectroscopy analysis showed the high grafting density of PMMA on the surface of CNFs. AFM results revealed that molecular grafting created non-uniformity on the CNFs surface, as compared to polymer brushes. In addition, thermodynamic work of adhesion and work of cohesion for the modified CNFs were reduced in water and diiodomethane solvents. Dispersion factor was studied to indicate the dispersibility of CNFs in polar and non-polar media. Dispersion energy was reduced after modification as a result of decreasing interfacial tension and the dispersibility of modified CNFs was improved in diiodomethane.  相似文献   

10.
A high incidence of bone defects and the limitation of autologous bone grafting require 3 D scaffolds for bone repair. Compared with synthetic materials, natural edible materials possess outstanding advantages in terms of biocompatibility, bioactivities and low manufacturing cost for bone tissue engineering. In this work, attracted by the natural porous/fabric structure, good biocompatibility and bioactivities of the lotus root, the lotus root-based scaffolds were fabricated and investigated the...  相似文献   

11.
The aspect of drug delivery is significant in many biomedical subareas including tissue engineering. Many studies are being performed to develop composites with application potential for bone tissue regeneration which at the same provide adequate conditions for osteointegration and deliver the active substance conducive to the healing process. Hydroxyapatite shows a great potential in this field due to its osteoinductive and osteoconductive properties. In the paper, hydroxyapatite synthesis via the wet precipitation method and its further use as a ceramic phase of polymer–ceramic composites based on PVP/PVA have been presented. Firstly, the sedimentation rate of hydroxyapatite in PVP solutions has been determined, which allowed us to select a 15% PVP solution (sedimentation rate was 0.0292 mm/min) as adequate for preparation of homogenous reaction mixture treated subsequently with UV radiation. Both FT-IR spectroscopy and EDS analysis allowed us to confirm the presence of both polymer and ceramic phase in composites. Materials containing hydroxyapatite showed corrugated and well-developed surface. Composites exhibited swelling properties (hydroxyapatite reduced this property by 25%) in simulated physiological fluids, which make them useful in drug delivery (swelling proceeds parallel to the drug release). The short synthesis time, possibility of preparation of composites with desired shapes and sizes and determined physicochemical properties make the composites very promising for biomedical purposes.  相似文献   

12.
A novel glass fiber reinforced composite was prepared by using silicon‐containing hybrid polymers, poly(methylhydrogen‐diethynylsilyene) (PMES) and poly(phenylethynyl‐silyloxide‐phenylborane) (APABS), as matrix resins. The curing behavior and rheological properties of the matrix resins were investigated by differential scanning calorimetry (DSC) and rotational rheometer. The dynamic viscoelastic properties, mechanical properties, and microstructures of the composites were studied by dynamic mechanical analysis (DMA), universal testing machine (UTM), and scanning electron microscopy (SEM), respectively. The results show that the composite can be well cured between 200 and 300 °C through reactive groups like Si‐H, N‐H, and C≡C units, the possible thermosetting mechanism is also proposed. The composites exhibit excellent mechanical properties with bending strength reach up to 261 and 178 MPa before and after heat‐treating, respectively. SEM analysis clearly indicates that crack in the matrix, matrix/fiber interface debonding, and fiber pull out are predominate failure mechanism for the composites which are heat‐treated in different temperatures. All these obtained results can give theoretical guiding reference for their further applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Summary : The treatment of large segmental diaphyseal bone deficiencies presents a formidable challenge. The standard treatment modalities such as cancellous bone grafting, cortical allografts, vascularized bone transfer, or distraction osteogenesis exhibit extremely high complication rates, and can culminate in limb amputation or major functional deficits. Recent efforts to develop new treatment modalities for segmental bone loss have resulted in designing new biodegradable polymeric and metallic mesh implants that can incorporate novel osteogenic, osteoinductive, and/or osteoconductive bone healing augmentation materials. These biologic implant composites are capable of further enhancing the efficacy of the treatment applied. This paper briefly reviews the limitations of the currently applied standard treatment modalities for segmental critical size bone defects, provides insight into the specific treatment challenges, and presents the animal and initial clinical results of new alterative treatment approaches that involve the application of cylindrical mesh implants consisting of biodegradable polylactide membranes or titanium cages as a means of potentiating the efficacy of bone graft.  相似文献   

14.
在氨基化改性的四氧化三铁(Fe3O4)纳米粒子表面引发N-羧酸酐L-谷氨酸苄酯(BLG-NCA)开环聚合, 制得四氧化三铁/聚L-谷氨酸苄酯(PBLG)复合材料(Fe3O4-g-PBLG). 改变单体和引发剂比例可以调控Fe3O4-g-PBLG的接枝率, 采用热失重分析(TGA)测得实际接枝率分别为66.36%, 79.66%和89.52%. 通过双乳液挥发法制备磁性Fe3O4-g-PBLG多孔微载体, 其中接枝率为89.52%的微载体密度为1.034 g/mL, 孔隙率为92.57%, 粒径为200~300 μm, 孔径为40~50 μm, 保水率为370%~400%. 同时Fe3O4-g-PBLG微载体具有超顺磁性, 在外加磁场作用下可排布成任意形状, 对治疗复杂结构的骨缺损具有显著优势. 因此Fe3O4-g-PBLG多孔微载体在骨组织工程领域具有潜在应用价值.  相似文献   

15.
提供了三元乙丙橡胶(EPDM)交联的一种方法.以二甲苯为溶剂,溶液法制备马来酸酐(MAH)接枝EPDM,然后向溶液中加入适量碳酸钙(CaCO3),与已接枝的马来酸酐(MAH)反应.待反应完全后,滴加丙酮作为沉淀剂,沉淀物真空干燥,制得EPDM-g-MAH/CaCO3弹性体复合材料.溶解、溶胀及拉伸性能测试结果表明,复合材料样品已形成有效的交联,且材料的抗张强度、断裂伸长率和模量均得到较大幅度的提高,当CaCO3含量达到体系总重的20%时,复合材料呈现最佳力学性能.上述实验结果是因为碱性的CaCO3的Ca2+可以与接枝在EPDM上的MAH发生配合反应,进而成为EPDM的交联中心,形成有效交联,从而促进了EPDM机械性能的提高,ATR-FTIR和TGA的测试结果被用于证实上述观点.  相似文献   

16.
基于白炭黑表面硅羟基与环氧基团的可反应性,利用Haake流变仪的高温高剪切作用,在170℃下,实现了环氧天然橡胶(ENR)对白炭黑的固态原位接枝,制备出一种高分散疏水型白炭黑.探讨了白炭黑和ENR的反应配比对增强性能的影响,确定合适的反应比例为3∶1.FTIR、TGA和TEM的分析结果证实了ENR被接枝到白炭黑表面上.对比研究了接枝前、后白炭黑对增强天然橡胶(NR)复合材料性能的影响,测试结果表明接枝白炭黑在天然橡胶中具有良好的分散性并能明显改善对天然橡胶的增强效果;接枝于白炭黑表面上的环氧天然橡胶分子玻璃化转变向高温偏移,使该复合材料在常温下具备优异力学性能的同时也体现出了高动态滞后的特点.  相似文献   

17.
The poor interfacial adhesion between carbon fibers (CFs) and polyimide (PI) resin has seriously hampered the application of CF/PI composites. In this work, the interfacial adhesion was efficiently enhanced by grafting on the CF surface. Surface morphology and surface composition of modified carbon fibers were characterized, which indicated that acrylamide was grafted successfully on the CF surface and the surface roughness was increased slightly. After grafting, the interface shear strength of modified carbon fibers/PI composites was significantly improved by 86.96%, and the interlaminar shear strength was enhanced by 55.61% due to the covalent bonds in interphase and the toughening effect of sizing agent. Moreover, the mechanical properties of composites with different interfacial adhesion were measured, which further confirmed the effect of the grafting modification.  相似文献   

18.
Poly(ε-caprolactone)/chitin fiber (PCL-CF) composites as potential bone substitutes were prepared using a simple melt-processing method. The results from differential scanning calorimetry and dynamic mechanical thermal analysis (DMTA) showed that there was interaction between PCL and CF. Static mechanical testing showed that tensile strength, Young’s modulus and flexural strength were increased by the addition of CF. The measurements from DMTA and an advanced rheometric expansion system showed that both the storage modulus and loss modulus were enhanced by CF. The PCL-CF composite with CF of 45% by mass had the best properties among all the tested composites.  相似文献   

19.
A new surface modification method of hydroxyapatite nanoparticles (n‐HA) by surface grafting reaction of L ‐lactic acid oligomer with carboxyl terminal (LAc oligomer) in the absence of any catalyst was developed. The LAc oligomer with a certain molecular weight was directly synthesized by condensation of L ‐lactic acid. Surface‐modified HA nanoparticles (p‐HA) were attested by Fourier transformation infrared spectroscopy, 31P MAS‐NMR, and thermal gravimetric analysis (TGA). The results showed that LAc oligomer could be grafted onto the n‐HA surface by forming a Ca carboxylate bond. The grafting amount of LAc oligomer was about 13.3 wt %. The p‐HA/PLLA composites showed good mechanical properties and uniform microstructure. The tensile strength and modulus of the p‐HA/PLLA composite containing 15 wt % of p‐HA were 68.7 MPa and 2.1 GPa, respectively, while those of the n‐HA/PLLA composites were 43 MPa and 1.6 GPa, respectively. The p‐HA/PLLA composites had better thermal stability than n‐HA/PLLA composites and neat PLLA had, as determined by isothermal TGA. The hydrolytic degradation behavior of the composites in phosphate buffered saline (PBS, pH 7.4) was investigated. The p‐HA/PLLA composites lost their mechanical properties more slowly than did n‐HA/PLLA composites in PBS because of their reinforced adhesion between the HA filler and PLLA matrix. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5177–5185, 2005  相似文献   

20.
Palladium-based composites are widely used as a heterogeneous catalyst in carbon–carbon coupling reactions and in catalytic converters used in the car industry. In this work, we demonstrate a simple, green and scalable synthesis procedure to obtain palladium (Pd) based heterogeneous catalyst. Surface functionalized silica microparticles were obtained in one-step by spray-drying a colloidal suspension of silica nanoparticles and gum arabic, an environmental-friendly biopolymer. Subsequently, palladium nanoparticles were reduced and attached to the substrate by gum arabic. The as-synthesized composite was characterized by field-emission scanning electron microscopy (FESEM), energy-dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), small angle x-ray scattering (SAXS), and high-resolution transmission electron microscopy (HR-TEM). The Pd@SiO2 composite was used as a catalyst in the reduction reaction of 4-nitrophenol by sodium borohydride. The catalyst showed good recycling properties. The present environmental-friendly approach for fabrication of Pd-based heterogeneous catalyst circumvents various complex chemical steps involved in conventional chemical methods and could be generalized for the production of ceramic or magnetite-based Pd composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号