首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By rationally introducing glutathione functionalized 1, 8–naphthalimide, a novel fluorescent chemosensor (NG) was successfully synthesized. NG can high selectively and sensitively recognize Fe3+/Hg2+ ions through quenching of fluorescence among all kinds of common metal ions in aqueous medium. The binding stoichiometry ratio of NG–Fe3+ is verified as 2:1and NG–Hg2+ as 1:2 confirmed by Job's plot method, FT-IR, 1H NMR and ESI–MS spectrum, and the possible sensing mechanism were also proposed. The chemosensor NG toward Fe3+ and Hg2+ displays the excellent advantages of high selectivity and sensitivity, low detection limits (7.92?×?10?8 and 4.22?×?10?8?M), high association constants (3.37?×?108 and 8.14?×?104?M?2), instataneous response (about 10s) and wide pH response range (3.0–8.0). Importantly, the chemosensor NG was successfully applied to determine Hg2+ in tap water. Meanwhile, the test strips based on NG were prepared, which could conveniently and efficiently detect Fe3+ and Hg2+. Moreover, the complex of NG and Fe3+ (NG–Fe3+) showed high selectivity and sensitivity for H2PO4 ̄ over many other anions in the same medium.  相似文献   

2.
A highly sensitive and selective naked-eye probe, 2,5-bis[3-benzyl-2-methylbenzothiazole]-croconaine (BMC) for sensing of Fe3+ was synthesized and characterized. The BMC can selectively recognize Fe3+ among the test cations (Ni2+, Mg2+, Cu2+, Ca2+, Na+, K+, Cr3+, Ag+, Ba2+, Zn2+, Pb2+, Al3+, Fe3+, Cd2+, Co2+) in DMF/H2O (4:1, v/v). The binding constant of BMC-Fe3+ was evaluated by using Benesi-Hildebrand plot. Simultaneously, the binding mode of BMC-Fe3+ was supporting by Job's plot, ESI-MS, FT-IR and 1H NMR. Correspondingly, the morphology of chelate complex was investigated by FESEM. Moreover, Fe3+ and EDTA could be employed as inputs and the fluorescence emission intensity which was 816 nm as output so that a molecular logic gate could be realized.  相似文献   

3.
A new metal complex[MnL2](NO32·CH3CN(1) was synthesized by reaction of 4’-4-(l,2,4-triazol-l-yl)phenyl -2,2’:6’,2"-terpyridine(L) with manganese nitrate.The structure of the complex was determined by X-ray crystallography.The results of UV-vis studies showed that the complex exhibits colorimetric sensing ability for Fe3+,which can be observed by naked eye.  相似文献   

4.
The absorption of Fe3+ ion from the aqueous phase to the solid phase was carried out by using p-tert-butyl calix[6]arene (L1), calix[6]arene (L2), p-tert-butyl calix[8]arene (L3), and calix[8]arene (L4). The effect of varying pH upon the absorption capability of parent calixarenes was examined. It was found that the compounds (L1, L2, L3, and L4) showed the highest extractability toward Fe3+ ion at 4.5–5.4. The calixarene L2 shows a strong binding ability to Fe3+ ion. Based on the continuous variation method, calixarene L2 formed 1:1 complex with Fe3+ ion.  相似文献   

5.
A simple and versatile ratiometric fluorescent Fe3+ detecting system, probe 1, was rationally developed based on the Fe3+-mediated deprotection of acetal reaction. Notably, this reaction was firstly employed to design fluorescent Fe3+ probe. Upon treatment with Fe3+, probe 1 showed ratiometric response, with the fluorescence spectra displaying significant red shift (up to 132 nm) and the emission ratio value (I522/I390) exhibiting approximately 2362-fold enhancement. In addition, the probe is highly sensitive (with the detection limit of 0.12 μM) and highly selective to Fe3+ over other biologically relevant metal ions. The sensing reaction product of the probe with Fe3+ was confirmed by NMR spectra and mass spectrometry. TD-DFT calculation has demonstrated that the ratiometric response of probe 1 to Fe3+ is due to the regulation of intramolecular charge transfer (ICT) efficiency. Moreover, the practical utility in fluorescence detection of Fe3+ in human blood serum was also conducted, and probe 1 represents the first ratiometric fluorescent probe that can be used to monitor Fe3+ level in human blood serum. Finally, probe 1 was further employed in living cell imaging with pancreatic cancer cells, in which it displayed low cytotoxicity, satisfactory cell permeability, and selective ratiometric response to Fe3+.  相似文献   

6.
Dioxomolybdenum(VI) complexes [MoO2(B1)H2O] (1), [MoO2(B2)EtOH] (2), [MoO2(B3)EtOH] (3) and [MoO2(B4)EtOH] (4) were synthesized using the Schiff base ligands H2B1(previously reported), H2B2, H2B3 and H2B4, respectively. These ligands were prepared by condensation of 1-(2-pyridyl) 5-methyl 3-pyrazole carbohydrazide with salicylaldehyde, o-hydroxy acetophenone, 5-bromo salicylaldehyde and 5-nitro salicylaldehyde respectively. Due to the presence of a substituted 1-(2-pyridyl) pyrazole unit, ligands H2B1, H2B2 and H2B3 exhibit fluorescent emissions, and the most intense emission was obtained for H2B3. H2B4 is incapable of showing fluorescence emission. As the ligands are capable of using different binding modes, according to the demands of the guest metal ions, their emission properties also change accordingly. The dioxomolybdenum(VI) complex of the ligand H2B1, i.e. complex 1, shows quenched emission compared to H2B1. Again when Cu2+, Co2+ or Ni2+ ions are added to a solution of 1, in each case a new complex of Cu2+ Co2+ or Ni2+ is formed in solution and further quenching was observed. However, with Zn2+ input to a solution of 1, fluorescence recovery was observed up to the level of the free ligand. The copper(II) complex of H2B1 (complex 5), produced by adding equivalent amount of Cu2+ salt to a solution of 1, was isolated and characterized. One of the dioxomolybdenum(VI) complexes, 3, when subjected to an oxo-transfer reaction with PPh3 produces complex [MoO(B3)CH3CN] (6). Complex 6 shows reduced fluorescence emissions compared to 3 in the solid phase. These observations open up the possibilities for these ligands to work as fluorescent signaling system with different metal ion inputs. All the complexes are characterized by elemental analyses, electronic spectra, IR, 1H NMR, magnetic measurements, EPR and by cyclic voltammetry. Complexes 1 and 5, as well as the ligands H2B2 and H2B3, have been crystallographically characterized.  相似文献   

7.
A new tetrapyridyl ligand (BDPEA) and the corresponding di-iron(III) μ-oxo complex were synthesized. The iron complex structure, determined by X-ray crystallography, exhibited the dinuclear core [Fe2III(BDPEA)2(μ-O)(NO3)2](NO3)2 (1). With monopersulfate as oxidant, this complex catalyzed the conversion of 2,4,6-trichlorophenol and catechol, with a better activity and an enhanced life-time compared to the previously reported complex [FeIII(BDPMA)](NO3)3 (2) (BDPMA: bis[di(2-pyridyl)methyl]amine) which contained two fragile benzylic C–H bonds on the tetrapyridyl ligand.  相似文献   

8.
A Tb3+ based coordination polymer (NKU-115) with free N sites was successfully constructed, featuring strong green light emission and selective quenching response toward Fe3+ in aqueous solution.  相似文献   

9.
2-Fold interpenetrating 3D framework for selective adsorption of CO2 over CH4 and fluorescence detection of Fe3+ ions and nitroaromatic compounds through fluorescence quenching.  相似文献   

10.
To realize highly selective relay recognition of Fe3+ and H2PO4- ions, a simple benzimidazole-based fluorescent chemosensor(L) was designed and synthesized. Sensor L displays rapid, highly selective, and sensitive recognition to Fe3+ in H2O/DMSO(1:1, v/v) solutions. The in situ-generated L-Fe3+ complex solution exhibits a fast response and high selectivity toward dihydrogen phosphate anion via the Fe3+ displacement approach. The detection limits of sensor L to Fe3+ and L-Fe3+complex to H2PO4- anion were estimated to be 1.0 × 10-9 mol/L. Notably, the sensor was retrievable to indicate dihydrogen phosphate anions with Fe3+, and H2PO4-, in turn, increased. This successive recognition feature of sensor L makes it a potential utility for Fe3+ and H2PO4- anion detection in aqueous media.  相似文献   

11.
A novel turn-on rhodamine B-based fluorescent chemosensor (RBCS) was designed and synthesized by reacting N-(rhodamine B)lactam-1,2-ethylenediamine and carbon disulfide. Upon addition of Fe3+ in EtOH/H2O solution (2:1, v/v, HEPES buffer, 0.6?mM, pH 7.20), the RBCS displayed a significant fluorescence enhancement at 582?nm and a dramatic color change from colorless to pink, which can be detected by the naked eye. Significantly, the RBCS exhibited a highly selective and sensitive ability toward Fe3+. The detection limit of the probe was 2.05?×?10?7?M. Job's plot indicated the formation of 1:1 complex between the RBCS and Fe3+. Moreover, the practical use of the RBCS is demonstrated by its application in the detection of Fe3+ in HeLa cells.  相似文献   

12.
A novel dinuclear nickel(II) complex Ni2(NO3)4(APTY)4 (1) (APTY?=?1,5-dimethyl-2-phenyl-4-{[(1E)-pyridine-4-ylmethylene]amino}-1,2-dihydro-3H-pyrazol-3-one), was synthesized by solvothermal reaction of Ni(NO3)2?·?6H2O with APTY in methanol at 353?K. The structure consists of centrosymmetric dimers resulting from octahedrally coordinated Ni atoms bridged by APTY ligands. Weak intermolecular interactions (C–H?···?N, C–H?···?O hydrogen bonding, C–H?···?π and π–π stacking interactions) are responsible for a supramolecular assembly of molecules in the lattice. Magnetic measurements over 1.8–300?K show weak antiferromagnetic coupling between Ni(II) ions with J?=?2.969?cm?1, g?=?2.280, θ?=??5.903.  相似文献   

13.
Some dibenzamide derivatives with a thioether linker were designed, synthesized and characterized. The specific responses to Hg2+ and Fe3+ were investigated by fluorescence. According to fluorescence titration, the Job plot, 1H NMR, and ESI-mass analysis, the derivative with mono-hydroxyl substituent (1b) on the aromatic ring has high selectivity for Fe3+ ion with the formation of 1:1 1b-Fe3+ complexes. The specificity of 1c for Hg2+ could be switched by swapping the substituent from hydroxyl to amino, and a 1:2 (1c-Hg2+) complex was formed. Along with the obtained results, density functional theory (DFT) and natural bond orbital (NBO) analyses, Time-dependent (TD) DFT and natural transition orbital (NTO) analyses were employed to explore the geometric structures, properties and possible mechanisms.  相似文献   

14.
Oxidation of [1.1]ferrocenylruthenocenophane with a large excess and 1.5 equivalents of iodine gives dicationic iodo[1.1]ferrocenylruthenocenophanium2+I3 · 0.5I22 (1) and monocationic [1.1]ferrocenylruthenocenophanium+I3 (2) salts respectively. The structures of 1 and 2 were analyzed by single-crystal X-ray diffraction studies. The crystal form of 1 is monoclinic space group C2/c, A = 21.35](5), B = 20.594(5), C = 17.397(4) Å, β = 124.17(1)°, Z = 8, and the final R = 0.068 and Rw = 0.070. The cation formulated as [FeIII(C5H4CH2C5H4)2RuIVI]2+ exists in a syn-conformation as in the cases of the neutral compound. The distance between the RuIV and FeII is 4.656(4) Å, which is much shorter than the value of the neutral compound (4.792(2) Å), and the bond angle of I---RuIV,FeIII is 81.26°. The dihedral angle between the two η5-C5H4 (fulvenide) rings on the RuIV moiety is 37.56° due to the RuIV---I bond (2.758(3) Å). These two rings of FeIII and RuIV moieties are essentially eclipsed. The unit cell has three kinds of I3 (I3a, I3b and I3c) and one I2, and the formula of 1 is given as [FeIII(C5H4CH2CSH4)2RuIVI]2+I3 · 0.5(I3)2 · 0.5I2. The crystal of 2 formulated as [FeIII(C5H4CH2C5H4)2RuII]+I3 is triclinic space group

, and the final R = 0.067 and Rw = 0.068. The unit cell has two independent molecules (unit A and B); i.e. two kinds of distance between the RuII and FeIII, are observed; one (A) is 4.615(3) and the other (B) is 4.647(3) α. The two η5-C5H4 rings of both FeIII and RuII are essentially staggered and the dihedral angles between the rings of FcH and RcH moieties are less than 5.8°. Typical ferrocenium-type broad singlet 57Fe-Mössbauer lines are observed for both salts (1, 2) at all temperatures.  相似文献   

15.
In aqueous solution [Fe2(μ-O)(phen)4(H2O)2]4+ (1, phen = 1,10-phenanthroline) equilibrates with its conjugate bases [Fe2(μ-O)(phen)4(H2O)(OH)]3+ (2) and [Fe2(μ-O)(phen)4(OH)2]2+ (3). In the presence of excess phen and in the pH range 2.5–5.5, the dimer quantitatively oxidizes pyruvic acid to acetic acid and carbon dioxide, the end iron species being ferroin, [Fe(phen)3]2+. The observed reaction rate shows a bell-shaped curve as pH increases, but is independent of added phen. Kinetic analysis shows that (3) is non-reactive and (1) has much higher reactivity than (2) in oxidizing pyruvic acid. The basicity of the bridging oxygen increases with deprotonation of the aqua ligands. The reaction rate decreases significantly in media enriched with D2O in comparison to that in H2O, with a greater retardation at higher pH, suggesting the occurrence of proton coupled electron transfer (PCET; 1e, 1H+), which possibly drags the energetically unfavorable reaction to completion in presence of excess phen.  相似文献   

16.
The methods of cyclic voltammetry, electrolysis, and spectrophotometry were used to study electrochemical properties of (TCAS + Fe3+ + dipy), (CCAS + Fe3+ + dipy), and (CCAS + Fe3+ + [Co(dipy)3]3+) triple systems (where TCAS is n-sulfonatothiacalix[4]arene, CCAS is tetracarboxylate n-sulfonatocalix[4]arene, and dipy = α,α′-dipyridyl) in an aqueous solution. One-electron reduction of Fe(III) in the (TCAS + Fe3+ + dipy) system at pH 2.5 results in electroswitching of iron ions from the lower TCAS ring to the upper ([Fe(dipy)3]2+). Reverse electrochemical switching of the system is impossible due to mediator ([Fe(dipy)3]2+/3+) oxidation of TCAS. Reverse electroswitching of Fe(III) ions from unbound to bound state as ([Fe(dipy)3]2+) with CCAS has been revealed in the system (CCAS + Fe3+ + dipy) (pH 1.7) upon single-electron transfer, whereas reversible electroswitching by the upper rim of CCAS from one complex ion ([Co(dipy)3]3+) to another ([Fe(dipy)3]2+) has been demonstrated in the system ([Co(dipy)3]3+ + CCAS + Fe3+ upon double-electron transfer. In all systems, electric switching was accompanied by synchronous color switching.  相似文献   

17.
Two new cyano-bridged Cu(II)-Fe(II) binuclear complexes, [Cu(L1)Fe(CN)5(NO)] (I) [L1 = 1,3,6,8,11,14-hexaazatricyclo[12.2.1.18,11]octadecane and [Cu(L2)Fe(CN)5(NO)] · 2H2O (II) L2 = 1,3,6,9,11,14-hexaazatricyclo[12.2.1.16,9]octadecane, have been assembled and structurally characterized by spectroscopy and X-ray crystallography. Complex I crystallizes in the monoclinic crystalline system of space group P21/c, while complex II crystallizes in the monoclinic crystalline system of space group P21/n. These two complexes assume a binuclear structure in which the Fe2+ ion is in an octahedron environment and the Cu2+ ion is in a square-prism geometry environment.  相似文献   

18.
A novel fluorescent chemical sensor for the highly sensitive and selective determination of Fe3+ ions in aqueous solutions is prepared. The iron sensing system was prepared by incorporating 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a neutral Fe3+-selective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a liphophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Fe3+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range from 6.0 × 10−4 to 1.0 × 10−7 M, with a relatively fast response time of less than 2 min. In addition to a high stability and reproducibility, the sensor shows a unique selectivity toward Fe3+ ion with respect to common coexisting cations. The proposed fluorescence optode was applied to the determination of iron(III) content of straw of rice, spinach and different water samples. The fluorescent sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

19.
Three Cd(II) or Co(II) macroacyclic Schiff-base complexes [CoL1Br]ClO4 (1), [CdL2Cl]ClO4 (2) and [CdL3(NO3)]ClO4 (3) were prepared by template condensation of 2-pyridinecarboxaldehyde and three different amines containing piperazine moiety, N,N′-bis(2-aminoethyl)piperazine, N,N′(2-aminoethyl)(3-aminopropyl)piperazine and N,N′-bis(3-aminopropyl)piperazine, in the presence of Co(II) or Cd(II) metal ions, respectively. All complexes have been studied with IR, FAB mass and microanalysis and for complex (3) by 1H and 13C NMR spectra. One of these complexes, [CdL3(NO3)]ClO4 (3) has been characterized through X-ray crystallography. In complex (3), the Cd(II) ion is coordinated by the six nitrogen donor atoms from the ligand and by one oxygen atom from a monodentate nitrate ion in a N6O environment.  相似文献   

20.
A long wavelength emission fluorescent (612 nm) chemosensor with high selectivity for H2PO4? ions was designed and synthesized according to the excited state intramolecular proton transfer (ESIPT). The sensor can exist in two tautomeric forms ('keto' and 'enol') in the presence of Fe3+ ion, Fe3+ may bind with the 'keto' form of the sensor. Furthermore, the in situ generated GY‐Fe3+ ensemble could recover the quenched fluorescence upon the addition of H2PO4? anion resulting in an off‐on‐type sensing with a detection limit of micromolar range in the same medium, and other anions, including F?, Cl?, Br?, I?, AcO?, HSO4?, ClO4? and CN? had nearly no influence on the probing behavior. The test strips based on 2‐[2‐hydroxy‐4‐(diethylamino) phenyl]‐1H‐imidazo[4,5‐b]phenazine and Fe3+ metal complex ( GY‐Fe3+ ) were fabricated, which could act as convenient and efficient H2PO4? test kits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号