首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
过渡金属硼化物(TMBs)是一类具有强耐磨性、抗腐蚀性、耐高温、高硬度的多功能材料.过渡金属与硼原子间电荷转移量的多样性决定了过渡金属硼化物中化学键的成键方式和成键强弱,最终导致过渡金属硼化物丰富的结构以及潜在的多功能特性.过渡金属硼化物的制备、晶体结构和力学性能一直是该领域的研究热点.硼原子间的强共价键决定了过渡金属硼化物的合成需要高能量;晶体结构中化学键的强弱与过渡金属硼化物的硬度性质息息相关;多种化学键成键方式使过渡金属硼化物展现出了丰富的多功能性质.本文主要从过渡金属硼化物的合成、结构、硬度性质和多功能性质四个方面,以不同硼原子亚结构单元为出发点,总结和分析了过渡金属硼化物的研究现状.我们认为,利用高温高压制备TMBs,诱导过渡金属与硼原子之间的电子转移,构造(准)三维的化学键,是设计制备新型多功能硬质过渡金属硼化物的有效方法.  相似文献   

2.
过渡金属在元素周期表中占有特殊位置,它们有较多的价电子、较高的电子密度、丰富的价态,通过在其中引入硼、碳、氮等易形成强共价键的轻元素原子形成化合物,是寻找新型多功能材料的重要手段.随着第一性原理计算理论的发展、电子计算机计算能力的提升、对硬度微观机制的理解的深入以及特定条件下物质对应的结构的预测软件的成熟,使得设计过渡金属化合物高硬度/超硬度新型多功能材料成为可能,目前这方面已经有了大量的工作.本文介绍了以硬度为主要性能的新型过渡金属化合物的设计基础,以及过渡金属轻元素化合物的研究现状,并对存在的问题进行了简述,可为新型高硬度多功能过渡金属化合物的设计及合成提供参考.  相似文献   

3.
在过渡金属轻元素化合物中,寻找新的硬质或者超硬材料是当前的一个研究热点.目前寻找范围多集中在过渡金属硼化物、碳化物和氮化物等二元体系,三元相的研究则相对较少.本文以已知Nb_3B_3C和Nb_4B_3C_2结构为模板,采用元素替代法构建了29种TM_3B_3C (TM为过渡金属元素)结构和29种TM_4B_3C_2结构,采用基于密度泛函理论的第一性原理计算方法,成功找到了热力学、动力学以及力学都稳定的Ta_3B_3C和Ta4B_3C2两种新相.结构搜索计算确认了这两相为全局能量最优结构.能带结构和态密度的计算显示这两相均为导体,导电性主要源于Ta原子的d电子.这两种新相的硬度大约为26 GPa,说明Ta_3B_3C和Ta_4B_3C_2属于高硬度材料,但不是超硬材料.  相似文献   

4.
近年来发展的层状金属或金属超晶格开始受到注意,实验发现了它们的一些有趣的性质,有的已经得到实际应用.本文试图对有关的理论工作作一评述. 一、电子和声子结构 金属超晶格是由交替堆垛的不同金属层组成.它有下列特点:尽管层的厚度可以达到原子的尺度,每一层中的原子仍能排列成规整点阵;层间的界面能达到相当清晰的程度;在与界面垂直的方向上存在相当严格的超晶格序.1.过渡金属超昌格的电子结构 我们建立了计算过渡金属超晶格电子结构的格林算子方法.以简单立方金属为例.在混合的Bloch-格点表象中将大块金属中电子的紧束缚近似(只计最近…  相似文献   

5.
超硬材料研究有两个重要难题一直备受关注:一是建立晶体宏观性能硬度与微观电子结构参数的定量关联,指导新型超硬晶体的设计;二是发现改进超硬材料综合性能(硬度、韧性和稳定性)的基本原理和技术途径,合成出综合性能更加优异的高性能超硬材料.首先从同时联系晶体硬度和电子结构的化学键出发,提出了共价晶体的压痕硬度为晶体中化学键对压头压入过程的综合阻抗的基本假设,建立了共价晶体硬度的微观模型并推广至多晶共价材料.在多晶硬度模型指导下,在高温高压条件下成功地合成出了纳米孪晶结构的立方氮化硼和金刚石块材,实现了硬度、韧性及热稳定性这三大工具材料性能指标的同时提高.另外,澄清了关于压痕硬度测量的长期争论.本文的研究为研发高性能超硬材料打开了一条新的技术途径,有望带来机械加工业和高压科学领域的新变革.  相似文献   

6.
郭泽堃  田颜  甘海波  黎子娟  张彤  许宁生  陈军  陈焕君  邓少芝  刘飞 《物理学报》2017,66(21):217702-217702
随着石墨烯研究的兴起,二维纳米材料得以迅速发展.在众多的二维纳米材料中,硼烯和碱土金属硼化物二维材料由于具有高费米速度、高杨氏模量、高透光性、高延展性、高度的各向异性、大的泊松比和高的化学稳定性等独特的性质,成为研究人员关注的焦点.本文侧重介绍目前硼烯和碱土金属硼化物二维纳米材料的制备工艺、结构、物性和应用情况.首先总结了目前硼烯的主要结构构型和制备及掺杂工艺;其次介绍了碱土金属硼化物二维纳米材料的理论结构构型和可能的制备路线;最后对硼烯和二维碱土金属硼化物纳米材料的物理特性进行归纳总结,同时预测它们未来最可能实现应用的领域.  相似文献   

7.
Ⅳ-Ⅵ族过渡金属与硼组成C32 型的二硼化物MB2(M=Ti,Zr,Hf,V,Nb,Ta.Cr,Mo),其B-B键呈六角形网.这类化合物具有耐热性好、熔点高、硬度大、抗化学浸蚀等一系列特性.因此,人们对这些化合物的稳定性很感兴趣,并从不同角度进行研究[1-3]. 最近,G.V.Samsonov等[2]指出B-B键对MB2化合  相似文献   

8.
二维磁性材料的自发磁化可以维持到单层极限下,为在二维尺度理解和调控磁相关性质提供了一个理想的平台,也使其在光电子学和自旋电子学等领域具有重要的应用前景.晶体结构为层状堆叠的过渡金属卤化物具有部分填充的d轨道和较弱的范德瓦耳斯层间相互作用等特性,是合适的二维磁性候选材料.结合分子束外延(MBE)技术,不仅可以精准调控二维磁性材料生长达到单层极限,而且可以结合扫描隧道显微术等先进实验技术开展原子尺度上的物性表征和调控.本文详细介绍了多种二维磁性过渡金属卤化物的晶体结构和磁结构,并展示了近几年来通过MBE技术生长的二维磁性过渡金属卤化物以及相应的电学和磁学性质.随后,讨论了基于MBE方法对二维磁性过渡金属卤化物的物性进行调控的方法,包括调控层间堆垛、缺陷工程以及构筑异质结.最后,总结并展望了二维磁性过渡金属卤化物研究领域在未来的发展机会与挑战.  相似文献   

9.
应用离散变分Xα量子化学分子轨道计算方法,研究了碳化硼、磷化硼和砷化硼在组成、结构、化学键和热电性能之间的关系,讨论了三种材料的同异之处。磷化硼和砷化硼虽然具有和碳化硼类似的结构,但是由于它们的P-P或As-As二原子链无双链特征,难以进行电子的传递;碳化硼的C-B-C或C-B-B三原子链上的键具有双键特征,有利于电子的传递及极化子的跃迁。因此,磷化硼和砷化硼无双键结构应该是其热电转换性能很差,以至被排除在热电材料之外的主要原因;而碳化硼的热电转换性能远优于磷化硼和砷化硼,具有双键特征应该是其主要原因。  相似文献   

10.
胡伟  方兴  金明睿  江晨 《光学技术》2020,(4):410-414
针对目前吸收器存在的吸收光谱过窄的技术问题,提出了一种由金属与非金属组成的具有金属-绝缘体-金属(MIM)结构的超材料吸收器模型,并模拟分析其辐射特性,计算总体吸收性能。针对给定的波长范围,通过对超材料吸收器的结构参数的改变,对比分析了周期、宽度、金属层厚度和介电层厚度对吸收器辐射特性的影响。结果表明,介电层厚度对吸收率的影响最为明显。研究了不同结构参数微结构的堆叠对多层超材料吸收器吸收峰的影响,结果显示可以通过叠加获得更高的吸收峰值,提升吸收器的总体吸收效率,在可见光到红外光间形成一个宽谱吸收。  相似文献   

11.
针对目前吸收器存在的吸收光谱过窄的技术问题,提出了一种由金属与非金属组成的具有金属-绝缘体-金属(MIM)结构的超材料吸收器模型,并模拟分析其辐射特性,计算总体吸收性能。针对给定的波长范围,通过对超材料吸收器的结构参数的改变,对比分析了周期、宽度、金属层厚度和介电层厚度对吸收器辐射特性的影响。结果表明,介电层厚度对吸收率的影响最为明显。研究了不同结构参数微结构的堆叠对多层超材料吸收器吸收峰的影响,结果显示可以通过叠加获得更高的吸收峰值,提升吸收器的总体吸收效率,在可见光到红外光间形成一个宽谱吸收。  相似文献   

12.
过渡金属硫化物单层具有直接带隙,可产生较强的光致发光,这一特殊的性质使其在光电器件、光电探测等领域具有广泛的应用前景.由于只有原子级别的厚度以及存在激子的非辐射复合,其光致发光效率仍有待提高.本文设计了一种金膜-二氧化钛光栅-过渡金属硫化物单层组合结构,可大幅提升过渡金属硫化物单层光致发光效率.利用Purcell效应对自发辐射速率进行控制,得到峰值为3.4倍的发光增强.研究了单层二硫化钨以及单层二硒化钨在设计结构上的光致发光信号,通过实验证实了过渡金属硫化物单层与亚波长光栅耦合结构中光致发光增强的可行性,为二维材料在光电器件中的应用提供了一个新思路.  相似文献   

13.
黎军军  赵学坪  陶强  黄晓庆  朱品文  崔田  王欣 《物理学报》2013,62(2):26202-026202
以化学计量配比的Ti,B元素为原料,在高温高压条件下成功制备出颗粒均匀、致密性大于99%的二硼化钛(TiB2)体材料.物性测试结果表明:TiB2的维氏硬度高达39.6 GPa(接近超硬材料的40 GPa);并呈现出金属导电特性,电阻率在10-8 Ω.m的数量级(接近TiB2单晶样品值).TiB2的高硬度与金属特性,可能与该方法制备的TiB2体材料中均匀的细小晶粒尺寸有关.该方法为制备功能陶瓷材料提供了新的思路.  相似文献   

14.
层状三元化合物Ti_3SiC_2兼具陶瓷与金属的优良性能而得到诸多研究领域的关注.本工作采用第一性原理密度泛函理论研究了氢、氦对该材料解理断裂行为的影响,以期探讨Ti_3SiC_2作为核应用材料的可行性.结果表明Si—Ti相对较弱的化学键使之相应的原子层间成为解理断裂面.氢与氦都易在此原子层间聚集.氦的聚集严重降低材料的解理断裂临界应力促使材料的断裂,而氢则对该临界应力影响不大.两者的差异源于这两类原子与材料中晶体原子相异的电子杂化行为.  相似文献   

15.
B_4C是继金刚石和立方氮化硼之后自然界中第三硬的超硬材料。然而人们在硬度方面对它的应用却很少。这主要是因为B_4C的自扩散系数很低,很难合成出块体材料的B_4C;其次,B_4C的断裂韧性很低,达不到工业应用的标准,在工业应用中容易出现碎裂。本篇文章利用高温高压法合成了块体材料的B_4C,并且合成的材料具有非常高的致密性。通过硬度测试发现其硬度高于材料的单晶硬度值。利用压痕法测量了样品的断裂韧性,其断裂韧性为4.51 MPa·m~(1/2),这一数值基本接近了工业应用的标准。通过扫面电镜测试发现其具有纳米层状结构。通过原理分析可知,纳米片层结构是导致B_4C具有高硬度和高断裂韧性的原因。  相似文献   

16.
超透镜(Metalens)是结合了超表面原理和超薄平板光学原理制作的一类自身尺度在亚波长范围内,能够对光波前进行重塑的新兴人工光学器件。二维范德华材料的出现为超透镜光学器件提供了丰富的材料选择以及功能调控方面的可能。以石墨烯、过渡族金属硫族化合物等为典型代表的二维材料归功于其层间相对较弱的范德华相互作用,可通过机械剥离、化学气相沉积等方法获得原子层厚度平整的单晶,天然满足超透镜材料厚度尺寸要求,其自身以及溶于溶剂形成的二维液晶材料均具有优异的电学、光学、机械、磁性等丰富的物理特性,且性能高度可调控,使得基于二维材料的超透镜除能满足传统透镜的特性功能外,还有望通过包括静电调控等方式得到具有可调控的新奇物理特性。因此,对基于二维材料的超透镜的发展现状进行总结,并结合其材料结构特性进行相关的展望对该行业的发展是十分迫切的。本综述主要围绕二维材料超透镜展开,概述了该类透镜的研究进展,包括二维层状材料以及二维液晶材料、二维材料超透镜的潜在应用前景,以及对二维超透镜这一新兴研究领域未来的发展方向进行了适当的总结与展望。  相似文献   

17.
高压技术是一种高效、连续、可逆的调控材料结构、电学、光学等物理特性的手段,因此利用压强工程在材料中实现超导态、制备超硬材料等成为高压领域的研究热点。不同于传统的三维体相材料,二维材料及其异质结中独特的层间耦合作用使其具有许多不同于传统材料的物理特性,且这些物理特性极易受到外场影响和调控,使得高压物理成功地拓展到低维材料领域。本文以石墨烯、黑磷、六方氮化硼和过渡金属二硫族化合物等几种典型的二维材料及其异质结为例,概述了二维材料及异质结在高压调控下的结构、电学、声子动力学、光学等方面的响应,并简要讨论这些高压调控下的二维材料在未来电子、光电器件等领域应用的潜力。  相似文献   

18.
过渡金属硫族化合物由于其具有独特的结构和性质,在光电子学、纳米电子学、储能器件、电催化等领域具有广泛的应用前景,是一类被持续关注的代表性二维层状材料.在材料应用过程中,对材料掺杂特性的调控会极大地改变器件的响应性能.因而,对利用掺杂手段调控过渡金属硫族化合物器件响应性能的研究具有重要的意义.电化学离子插层方法的发展为二维材料的掺杂调控提供了新的手段.本文以WS2为例,采用电化学离子插层方法对厚层WS2的掺杂特性进行优化,观察到离子插入后器件电导率的显著增强(约200倍),以及栅压对器件光电响应性能的有效且可逆的调控.本文通过栅压控制离子插层的方法实现对WS2器件光电响应的可逆可循环调节,为利用离子插层方法调控二维材料光电器件响应性能研究提供了实验基础.  相似文献   

19.
徐元清  张勇 《物理》2019,48(8):522-525
2004年,石墨烯(graphene)首次从天然石墨中(微)机械剥离出来[1],从而揭开了二维材料的神秘面纱,以及这种独特结构所带来的全新物理,它的发现者Geim和 Novosolev也因此获得诺贝尔物理学奖。石墨烯的出现,使得纳米碳材料完成了维度上的全满贯(即零维富勒烯、一维碳纳米管和二维石墨烯)。随后,各种二维材料,如六方氮化硼(h-BN)、过渡金属二硫族化合物(TMDs)等等,相继从本体层状材料中机械/液相剥离出来[2,3]。通过数据库搜索,人们找到800多种结构稳定的本体层状材料,并且理论预测可以从中剥离出(单层)二维材料[4]。如此丰富的本体层状材料无疑会加速剥离方法在二维材料制备中的应用。  相似文献   

20.
《物理》2017,(4)
自首次从石墨中剥离出石墨烯以来,只有原子级厚度的层状(或二维)材料因其丰富奇特的物性占据着当今凝聚态物理和材料科学的中心舞台。不断扩大的二维材料家族,包括石墨烯、硅烯、磷烯、硼烯、六方氮化硼、过渡金属二硫族化合物、甚至强拓扑绝缘体等,不仅每个成员有其鲜明的个性,如独特的物性与制备方法,而且整个大家族又有其共性,如单层材料与衬底之间、层与层之间几乎都是依赖弱的范德瓦尔斯力耦合在一起。对任一个二维家族成员的深层理解,都可能对真正走进这一大家族有普适性价值。文章首先介绍范德瓦尔斯层状材料非平衡外延生长中常常遇到的主要原子过程和相应的形貌演化;进一步讨论范德瓦尔斯相互作用在二维材料横向或垂直堆叠的异质结中的重要性。在原子尺度的生长机理之外,也围绕二维材料的物性优化与功能化简要介绍一些最新进展,具体例子覆盖光学、电学、自旋电子学、催化等领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号