首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
In this work, we compared formation and properties of heat‐treated Ag nanoparticles in silica matrix synthesized by RF‐reactive magnetron cosputtering and sol–gel methods separately. The sol–gel and sputtered films were annealed at different temperatures in air and in a reduced environment, respectively. The optical UV‐visible spectrophotometry have shown that the absorption peak appears at 456 and 400 nm wavelength indicating formation of silver nanoparticles in SiO2 matrix for both the sol–gel and sputtering methods at 100 and 800 °C, respectively. XPS measurements showed that the metallic Ag0 nanoparticles can be obtained from both the techniques at these temperatures. According to XPS and AFM analysis, by increasing annealing temperature, the concentration of the Ag nanoparticles on the surface decreased and the nanoparticles diffused into the substrate for the sol–gel films, while for the films deposited by cosputtering method, the Ag surface concentration increased by increasing the temperature. Based on AFM observations, the size of nanoparticles on the surface were obtained at about 25 and 55 nm for sputtered and sol–gel films, respectively, supporting our optical data analysis. In comparison, the sputtering technique can produce Ag metallic nanoparticles with a narrower particle size distribution relative to the sol–gel method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The effect of synthesis conditions (molar ratio between precursors, concentration of surfactants, synthesis temperature) on the size of CdS, ZnS and Ag2S nanoparticles (NPs) stabilized by sodium bis(2-ethylhexyl)succinate and polyoxyethylenesorbitan monooleate was studied. It was established that stabilization by polyoxyethylenesorbitan results in formation of smaller NPs (~8 nm) as compared to that in the presence of sodium bis(2-ethylhexyl)sulfosuccinate (14–60 nm), which is due to the difference between the adsorption rates of these surfactants onto the surface of synthesized NPs. The resulting aqueous dispersions of CdS, ZnS and Ag2S NPs exhibit long-term stability to sedimentation. The nanoparticle size increases insignificantly with temperature increasing to 65–70°C and rises abruptly at higher temperatures. The increase in the ratio between concentrations of precursors (sulfide and metal ions) also results in an increase in NP size, allowing one to synthesize nanoparticles of prescribed sizes. The optical properties of the resulting nanoparticles were studied. The positions of the exciton peaks and the luminescence intensity peaks of the dispersions of synthesized CdS and ZnS NPs were determined.  相似文献   

3.
This work reports the biosynthesis of Sn(OH)2 using aqueous extract of fresh cauliflower (Brassica oleracea L. var. botrytis), and the subsequent preparation of SnO2 nanoparticles at two different annealing temperatures of 300 and 450 °C for 2 h. The obtained SnO2 nanoparticles were denoted as S1 and S2 for the samples prepared at 300 and 450 °C, respectively. XRD analysis identified rutile tetragonal phase of SnO2 nanoparticles and TEM results gave a quasispherical and spherical morphologies for S1 and S2 respectively of the size range 3.62–6.34 nm. The optical properties were studied with UV–vis and photoluminescence (PL) spectroscopies, and the nanoparticles showed blue shift in their absorption edges. The observed emission peak in the PL spectra found around 419 nm is attributable to oxygen vacancies and defects. Photocatalytic activities of the nanoparticles (S1 and S2) were studied using methylene blue (MB) under ultraviolet light irradiation and the results reveal 91.89 and 88.23% degradation efficiency of MB by S1 and S2 respectively over a period of 180 min.  相似文献   

4.
In the present paper, cadmium zinc selenide (Cd0.5Zn0.5Se) thin films were deposited on glass substrates by chemical bath deposition with optimized deposition parameters. 2-mercaptoethanol was used as a capping agent. The as-deposited thin films were annealed at 300, 500 and 700 °C and then subjected to various structural, morphological and optical investigations. The effect of the presence of capping agent and annealing on these properties was discussed. The phenomenon of phase transformation occurred during annealing. The optical band gap energies were found in the range 2.37–1.7 eV with respect to the annealing temperatures.  相似文献   

5.
NiO is one of the most important candidates for semiconductors metal oxide nanocrystals by the arrangement of photocatalytic application. However, the photocatalytic performance of biosynthesized nanocrystals using Aspalathus linearis (Burm.f.) R. Dahlgren has not been investigated yet. In this contribution, we synthesize α-Ni(OH)2 using an A. linearis. A heat treatment of the α-Ni(OH)2 is carried out at 300–400°C for 2?h at normal air yields. Furthermore, we have characterized the structural, optical and photocatalytic activity of the samples. The optical results indicate that biosynthesized nanocrystals exhibit UV–visible light absorption and a narrow range distribution of intense green light (518.95?nm) emission, which decreases significantly as annealing temperature increases. The bandgap energies of the sample annealed at 300–400°C shift to lower photon energy, compared to bulk NiO (~ 4?eV). Moreover, the photocatalytic experimental results reveal that NiO nanocrystals enable color switching of methylene blue.  相似文献   

6.
In this study, maghemite (γ‐Fe2O3) nanoparticles were initially synthesized via chemical co‐precipitation and then deposited by spray pyrolysis as thin films on white glass substrates. The thin films were annealed for 8 h at 400, 450, 500, 550, and 600 °C in an oven. The structural studies of maghemite nanoparticles were carried out using X‐ray diffractometer. Structural properties that we investigated by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, SEM, and Energy dispersive X‐ray analysis (EDS). Optical properties of the samples were also investigated by ultraviolet‐visible (UV–vis) spectroscopy. The results showed that maghemite nanoparticles have crystalline structure with domain that increases in size with increasing annealing temperature. The optical band gap values were found to reduce from 2.9 to 2.4 eV with increase in annealing temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The simple preparation of Co3O4 nanoparticles from a solid metallorganic molecular precursor [bis(salicylaldehydeato)cobal(II)]; [Co(sal)2] has been achieved via two simple steps: firstly, the [Co(sal)2] precursor was precipitated from the reaction of cobalt(II) acetate and salicylaldehyde; in propanol under nitrogen condition; then, cubic phase Co3O4 nanoparticles with the size of mostly 20–30 nm could be produced by thermal treatment of the [Co(sal)2] in air at 500 °C for 5 h. The as-synthesized products were characterized by powder XRD, FT-IR, TEM and SEM. The results confirm that the resulting oxide was pure single-crystalline Co3O4 nanoparticles. The optical absorption spectrum indicates that the direct band gaps of Co3O4 nanoparticles are 1.53 and 2.02 eV. The optical property test indicates that the absorption peak of the nanoparticles shifts towards short wavelength, and the blue shift phenomenon might be ascribed to the quantum effect. The hysteresis loops of the obtained samples reveal the ferromagnetic behaviors the enhanced coercivity (H c ) and decreased saturation magnetization (M s ) in contrast to their respective bulk materials.  相似文献   

8.
Silver sulfide nanoparticles dispersed in sol-gel derived hydroxypropyl cellulose (HPC)-silica films have been successfully synthesized using H2S gas diffusion method. This is the first attempt to produce silver sulfide nanoparticles using this technique. Ag2S nanoparticles are generated through reaction of H2S gas with AgNO3 precursor dissolved in the HPC-silica matrix. Transmission electron microscope (TEM) and atomic force microscope (AFM) analysis reveal nanoparticles size distribution from 2.5 nm to 56 nm for H2S gas exposed sample. The surface chemistry of Ag2S nanoparticles and sol-gel derived HPC-silica matrix is confirmed by X-ray photoelectron spectroscopy (XPS). The negative shifts in the core-level XPS Ag (3d) binding energy of Ag2S nanoparticles are attributed to Ag : S surface atomic ratio exhibited by these nanoparticles with varying processing conditions. Following processing and characterization, suitability of the present method to produce silver sulfide ion-selective electrode is demonstrated by depositing Ag2S nanoparticles on a graphite rod. The high reponse function of the electrode is due to the presence of nanoparticles.  相似文献   

9.
Herein, we report visible light active mesoporous cadmium bismuth niobate(CBN) nanospheres as a photocatalyst for hydrogen(H_2) generation from copious hydrogen sulfide(H_2S). CBN has been synthesized by solid state reaction(SSR) and also using combustion method(CM) at relatively lower temperatures.The as-synthesized materials were characterized using different techniques. X-ray diffraction analysis shows the formation of single phase orthorhombic CBN. Field emission scanning electron microscopy and high resolution-transmission electron microscopy showed the particle size in the range of ~0.5–1 μm for CBN obtained by SSR and 50–70 nm size nanospheres using CM, respectively. Interestingly, nanospheres of size 50–70 nm self assembled with 5–7 nm nanoparticles were observed in case of CBN prepared by CM.The optical properties were studied using UV–visible diffuse reflectance spectroscopy and showed band gap around ~3.0 eV for SSR and 3.1 eV for CM. The slight shift in band gap of CM is due to nanocrystalline nature of material. Considering the band gap in visible region, the photocatalytic activity of CBN for hydrogen production from H_2S has been performed under visible light. CBN prepared by CM has shown utmost hydrogen evolution i.e. 6912 μmol/h/0.5 g which is much higher than CBN prepared using SSR.The enhanced photocatalytic property can be attributed to the smaller particle size, crystalline nature,high surface area and mesoporous structure of CBN prepared by combustion method. The catalyst was found to be stable, active and can be utilized for water splitting.  相似文献   

10.
Polyethylene glycol–polyvinyl alcohol (PEG–PVA) blend is a multifunctional material and controlling its properties is important for various medical and industrial uses. In this paper, we report the influence of carboxymethyl cellulose (CMC) and doping with tin oxide (SnO2) nanoparticles (NPs) on the structural and optical properties of PEG–PVA. The prepared samples were investigated by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and UV–Vis-NIR spectroscopies. SnO2 NPs of rutile structure, average crystallite size of ~30.2 nm and optical band gap (Eg) of 3.68 eV were prepared by a simple sol–gel process. CMC addition enhances the crystallinity of PEG–PVA that then gradually reduced by increasing SnO2 doping ratio. The optical transmittance of PEG–PVA increased from 77 to 90% after mixing with CMC and then decreased to 64% with increasing SnO2 content to 1.5%. Also, the Eg of PEG–PVA increased from 5.20 to 5.28 eV and then decreased to 4.88 eV due to CMC addition and SnO2 incorporation, respectively. The refractive index, the dispersion parameters and the optical conductivity of PEG–PVA, CMC/PEG–PVA and of its nanocomposite films are discussed. The correlation between the structural modifications and the resultant optical properties are reported.  相似文献   

11.
Photoinduced syntheses offer significant advantages over conventional thermal strategies, including improved control over reaction kinetics and low synthesis temperatures, affording nanoparticles with nontrivial and thermodynamically unstable structures. However, the photoinduced syntheses of non‐metallic nanocrystalline products (such as metal sulfides) have not yet been reported. Herein, we demonstrate the first photoinduced synthesis of ultrafine (sub‐2 nm) Ag2S quantum dots (QDs) from Ag nanoparticles at 10 °C. By thorough investigation of the mechanism for the transformation, a fundamental link was established between the intrinsic structures of the molecular intermediates and the final Ag2S products. Our results confirm the viability of low‐temperature photochemical approaches in metal sulfide synthesis, and demonstrate a new rule which could be followed in it.  相似文献   

12.

Bi2MoO6 nanoplates modified with intermetallic AgPd nanoparticles synthesized by photoreduction deposition method were used for visible-light-driven photodegradation of rhodamine B. The as-synthesized AgPd/Bi2MoO6 nanocomposites were identified by XRD. The 2θ diffraction angle of the (111) plane of pure metallic cubic Ag at 38.11° of heterostructure 10% Ag/Bi2MoO6 nanocomposites shifted to a higher diffraction angle at 38.17° of heterostructure 10% Ag0.7Pd0.3/Bi2MoO6 nanocomposites. TEM images of the as-synthesized nanocomposites showed good metallic Ag and intermetallic AgPd nanoparticles with particle size of 10–12 nm which were fully supported on top of Bi2MoO6 nanoplates. Bi2MoO6 nanoplates deposited with intermetallic AgPd nanoparticles show significant photocatalytic activity better than Ag/Bi2MoO6 and Bi2MoO6 due to the formation of AgPd/Bi2MoO6 Schottky barrier.

  相似文献   

13.
Highly crystalline niobium- and tantalum-based oxynitride perovskite nanoparticles were obtained from hydrothermally synthesized oxide precursors by thermal ammonolysis at different temperatures. The samples were studied with respect to their morphological, optical and thermal properties as well as their photocatalytic activity in the decomposition of methyl orange. Phase pure oxynitrides were obtained at rather low ammonolysis temperatures between 740 °C (CaNbO2N) and 1000 °C (BaTaO2N). Particle sizes were found to be in the range 27 nm–146 nm and large specific surface areas up to 37 m2 g−1 were observed. High photocatalytic activities were found for CaNbO2N and SrNbO2N prepared at low ammonolysis temperatures. CoOx as co-catalyst was loaded on the oxynitride particles resulting in a strong increase of the photocatalytic activities up to 30% methyl orange degradation within 3 h for SrNbO2N:CoOx.  相似文献   

14.
In this work, the structural and optical properties of titanium dioxide (TiO2) nanopowders are studied. The TiO2 nanoparticles were synthesized by complexing sol–gel process and effect of complexing agents on transition of the anatase phase to rutile phase during the heat treatment have been investigated. In addition, we have studied the grain size of TiO2 powders and their dependence on the type of complexing agent. The analysis of the XRD patterns, FT-IR and UV–Vis spectroscopy, BET surface area and TEM images show that the synthesis of nanoparticles with acetyl acetone (AcAc) as complexing agent yielded the smallest size of nanoparticles about 22–35 nm. Our results indicate that with increasing the calcinating temperature, the size of the nanoparticles is increased and the energy gap reduced, too. Also, the optical band gap was obtained in the range of 3.4–4.1 and 3.06–3.74 eV for anatase and rutile phases, respectively.  相似文献   

15.
《Arabian Journal of Chemistry》2020,13(12):9166-9178
The current work investigates the morphology, crystallinity and photoelectrochemical (PEC) performance of bismuth sulfide/silver sulfide/zinc oxide nanorods (Bi2S3/Ag2S/ZnO NRAs) photoelectrodes as prepared at different annealing temperature. ZnO NRAs was initially grown hydrothermally, deposited in sequence with Ag2S and Bi2S3 via successive ionic layer adsorption and reaction (SILAR) method before undergoing the annealing treatment. The optimised photoelectrode (Bi2S3/Ag2S/ZnO NRAs-400 °C) possesses an optical bandgap of 1.60 eV extending the absorption edge of ZnO to visible light spectrum. The current-voltage characterization of Bi2S3/Ag2S/ZnO NRAs photoelectrodes revealed that the photocurrent density and photoconversion efficiency were strongly dependent on the annealing temperature. The PEC study shows that the photoelectrode annealed at 400 °C achieved impressive photocurrent density of 12.95 mA/cm2 at +0.5 V (vs Ag/AgCl/saturated KCl) under 100 mW/cm2 illumination with superior photoconversion efficiency of 12.63%. This improvement is due to the cascade-designed band structure alignment of Bi2S3/Ag2S/ZnO/ITO and to the brilliant role of Ag2S as an intermediate layer that reduced random chance of electron-hole (e-h+) pairs recombination and improved the electrons collection efficiency. This work is highly anticipated to give contribution on further utilisation of Bi2S3/Ag2S/ZnO NRAs as a promising semiconductor material in PEC related applications.  相似文献   

16.
Ag2S nanoparticles in hyperbranched polyurethane matrix were prepared through the in situ reaction with thioacetamide as the sulfur source at room temperature. Transmission electron microscopic analysis revealed a uniform spherical shape for Ag2S nanoparticles, with an average size of about 4-10 nm and a narrow size distribution. X-ray powder diffraction and UV-vis spectroscopy were also used to characterize the obtained nanoparticles  相似文献   

17.
We present a ternary semiconductor nanoparticle sensitizer – AgSbS2 – for solar cells. AgSbS2 nanoparticles were grown using a two-stage successive ionic layer adsorption and reaction process. First, Ag2S nanoparticles were grown on the surface of a nanoporous TiO2 electrode. Secondly, a Sb–S film was coated on top of the Ag2S. The double-layered structure was transformed into AgSbS2 nanoparticles ~ 40 nm in diameter, after post-deposition heating at 350 °C. The AgSbS2-sensitized TiO2 electrodes were fabricated into liquid-junction solar cells. The best cell yielded a power conversion efficiency of 0.34% at 1 sun and 0.42% at 0.1 sun. The external quantum efficiency (EQE) spectrum covered the range of 380–680 nm with a maximal EQE of 10.5% at λ = 470 nm. The method can be applied to grow other systems of ternary semiconductor nanoparticles for solar absorbers.  相似文献   

18.
Undoped and silver-doped TiO2 nanoparticles (Ti1?x Ag x O2, where x?=?0.00?C0.10) were synthesized by a sol?Cgel method. The synthesized products were characterized by X-ray diffraction (XRD), particle size analyzer (PSA), scanning electron microscope (SEM), and UV?CVisible spectrophotometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average crystallite size of synthesized nanoparticles was determined from X-ray line broadening using the Debye?CScherrer formula. The crystallite size was varied from 8 to 33?nm as the calcination temperature was increased from 300 to 800?°C. The incorporation of 3 to 5% Ag+ in place of Ti4+ provoked a decrease in the size of nanocrystals as compared to undoped TiO2. The SEM micrographs revealed the agglomerated spherical-like morphology of particles. SEM, PSA, and XRD measurements show that the particles size of the powder is in nanoscale. Optical absorption measurements indicated a red shift in the absorption band edge upon silver doping. Direct allowed band gap of undoped and Ag-doped TiO2 nanoparticles measured by UV?CVis spectrometer were 3.00 and 2.80?eV, respectively, at 500?°C.  相似文献   

19.
Dy3+ doped zinc oxide was prepared by co-precipitation method. The as-prepared samples were annealed at different temperatures to obtain the samples with different particle sizes. The crystallographic phases of all the samples were confirmed by X-ray diffraction (XRD) patterns. Rietveld analysis of the XRD pattern of the sample annealed at 80 °C showed that most of the Dy3+ ions were substituted in the Zn2+ site of the hexagonal ZnO lattice. But in case of samples annealed at higher temperatures, a fraction of Dy3+ ions comes out from the ZnO lattice and this fraction increases with the increase of annealing temperature. The sizes of nanoparticles and the lattice strains of all the samples were obtained from the Hall–Williamson plot. High resolution transmission electron microscopy showed that ZnO nanoparticles are more or less spherical. Magnetic susceptibilities (χ) of some selected samples measured in the temperature range of 300–14 K indicate that the samples are paramagnetic. Values of χ were successfully fitted by Curie–Weiss law. A good theoretical simulation of χ of the sample annealed at 80 °C has been achieved using the one-electron crystal field interaction of the Dy3+ ions with its diamagnetic neighbors in the hexagonal single crystal.  相似文献   

20.
Silver cations were introduced in nanosized BEA-type zeolite containing organic template by ion-exchange followed by chemical reduction towards preparation of photoactive materials (Ag0-BEA). The stabilization of highly dispersed Ag0 nanoparticles with a size of 1–2 nm in the BEA zeolite was revealed. The transient optical response of the Ag-BEA samples upon photoexcitation at 400 nm was studied by femtosecond absorption. The photodynamic of the hot electrons was found to depend on the sample preparation. The lifetime of the hot electrons in the Ag−BEA samples containing small Ag nanoparticles (1–2 nm) is significantly shortened in comparison to bear Ag nanoparticles with a size of 10 nm. While for the larger Ag nanoparticles, the energy absorbed in the conduction band is decaying by electron-phonon coupling into the metal lattice, the high surface-to-volume ratio of the small Ag nanoparticles favors the dissipation of the energy of the hot electrons from the metal nanoparticles (Ag0) towards the zeolitic micro-environment. This finding is encouraging for further applications of Ag-containing zeolites in photocatalysis and plasmonic chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号