首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with the deposition of NiO and Nitrogen (N)-doped NiO thin films by sol-gel spin coating technique. Structural, morphological, linear and non-linear optical characteristics of undoped and N-doped (1–15 wt%) NiO films were studied. From XRD measurements, it is evident that single phase nano crystalline NiO is formed for all doping concentrations. Surface morphology study shows that higher concentration of N doped NiO thin films were of high quality and EDX mapping confirmed the doping of Nitrogen in films. The Raman spectra of the studied films were analyzed over the range of 1400-200 cm−1. The optical studies confirm that as doping increases, transparency of the film decreases (except at 10% N doping) and the band gap narrows. Nonlinear parameters such as refractive index and susceptibilities also depend on N dopant concentration. Z-scan studies viz., absorption index, nonlinear refractive index were carried out on undoped and N doped NiO samples and the results were matched with theoretical calculated values.  相似文献   

2.
3.
The formation and the optical features of two-dimensional aggregates formed by DNA-directed immobilization and cross-linking of bifunctional DNA–gold nanoparticles at flat gold substrates are analyzed. The samples are structurally characterized by atomic force microscopy to evaluate the particle size, the particle densities, and the degree of aggregation. The optical characteristics determined by UV/visible measurements are correlated with the structural features observed.
Ulrich SimonEmail:
  相似文献   

4.
The complexes of cerium with nitrogen, oxygen and sulfur donor ligands were prepared by conventional method. These newly synthesized complexes were characterized by FTIR, UV–Vis, DART Mass, TGA, PXRD, SEM and TEM techniques. The magnetic studies were carried out by the vibrating sample magnetometer. The optical constants were measured by absorption and reflection spectra as a function of wavelength. The concentration dependence of refractive index and absorption was observed by the experimental method, which reveals that these parameters are affected by change in concentration. The optical band gap obtained from Tauc-plot indicates its probability to be a good semiconductor. The luminescence behavior of these cerium complexes was observed by the absorption and emission spectra and the emission life time was calculated by their life time spectra.  相似文献   

5.
Ab initio calculations were performed to investigate the structural, elastic, electronic and optical properties of the ternary layered systems AInS2 (A = K, Rb and Cs). The calculated structural parameters are in good agreement with the existing experimental data. Analysis of the electronic band structure shows that the three studied materials are direct band-gap semiconductors. Density of states, charge transfers and charge density distribution maps were computed and analyzed. Numerical estimations of the elastic moduli and their related properties for single-crystal and polycrystalline aggregates were predicted. The optical properties were calculated for incident radiation polarized along the [100], [010] and [001] crystallographic directions. The studied materials exhibit a noticeable anisotropic behaviour in the elastic and optical properties, which is expected due to the symmetry and the layered nature of these compounds.  相似文献   

6.
In the present paper, cadmium zinc selenide (Cd0.5Zn0.5Se) thin films were deposited on glass substrates by chemical bath deposition with optimized deposition parameters. 2-mercaptoethanol was used as a capping agent. The as-deposited thin films were annealed at 300, 500 and 700 °C and then subjected to various structural, morphological and optical investigations. The effect of the presence of capping agent and annealing on these properties was discussed. The phenomenon of phase transformation occurred during annealing. The optical band gap energies were found in the range 2.37–1.7 eV with respect to the annealing temperatures.  相似文献   

7.
We investigated the structural, optical and magnetic properties of Mn-doped zinc oxysulfide films. Zn(O,S) films were deposited by a spray pyrolysis method on glass substrate. A thin Mn layer evaporated on these films served as the source for the diffusion doping. The XRD pattern of undoped films revealed the presence of two wurtzite phases corresponding to ZnS and ZnO with a strong preferred orientation along the ZnS (0 0 2) hexagonal plane direction. SEM showed a similar surface morphology for the undoped and Mn-doped films, displaying regular arrays of hexagonal micro-rods perpendicular to the substrate. The optical transmission measurements showed that both undoped and Mn diffusion-doped films had a low average transmittance less than about 10%. The gap energy is decreased from 3.42 to 3.33 eV upon annealing at 400 °C. Photoluminescence studies at 300 K show that the incorporation of manganese leads to a decrease of deep level band intensity compared to undoped sample. Clear ferromagnetic loops were observed for the Mn-doped Zn(O,S) films, which might be due to the presence of point defects.  相似文献   

8.
CdS nanostructures with different morphologies and sizes were successfully fabricated through a facile and effective carbon-assisted thermal evaporation method. Through simply changing the positions of silicon substrates, the temperatures and the effects of carbon in different zones were modified, and thus the morphologies of CdS nanostructures were varied from multipods to nanobrushes to nanocups. These nanostructures were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectrometry (EDS), X-ray powder diffraction (XRD) and Raman spectroscopy. Cathodoluminescence (CL) measurement shows that the as-grown CdS nanostructures display different luminescent properties. CdS multipods and nanocups show mainly green emission centered at 496 nm. However, nanobrushes exhibit predominant red emission band peaking at 711 nm. These interesting results show that carbon not only affected the growth process but also influenced the properties of CdS nanostructures.  相似文献   

9.
《印度化学会志》2023,100(1):100855
The objective of the study is to synthesize Zinc Sulphide nanoparticles (ZnS) with different amino acid capping agents in aqueous solution by a simple and cost effective facile chemical co precipitation method and analyze their optoelectronic features. Bio compatibility with less toxic amino acids such as l-Glutamic acid, l-Alanine and l-Asparagine were used as capping agents. These amino acids are from Non-essential amino acid group and its capping behavior suitable for semiconducting nanoparticles like ZnS. The role of non essential amino acids were to stabilize the nanoparticle against agglomeration and also to provide chemical passivation that leads to a significant influence on the improved structural, optical and photoluminescence properties of ZnS nanoparticles. The detailed structural analysis of Zinc Sulphide nano particles revealed by X-ray diffraction method (XRD). From this analysis observed the formation of Cubic ZnS nanoparticles with an average crystallite size in the range of 2.08–2.22 nm.The morphology of the nano particles studied by Field emission scanning electron microscope (FESEM). Particle size examined by Dynamic Light scattering studies (DLS) and which revealed that particle size ranges are below 50 nm. The functional groups of nanoparticles were identified by Fourier transform Infrared spectroscopy (FT-IR) studies. Photoluminescence studies attributed that the considerable emission bands. The UV–Vis analysis disclosed the optical band gap range from 3.77 eV to 3.95 eV.  相似文献   

10.
Diaqua oxalato strontium(II) complex [Sr(C2O4)(H2O)2] was prepared via a precipitation reaction. Thermal treatment of the as-synthesized precursor at 550?°C resulted in formation of strontium carbonate (SrCO3) nanocrystals. A new composite of silver nanoparticles decorated with strontium carbonate (Ag-NPs@SrCO3) was fabricated by heating a mixture of silver oxalate and strontium carbonate in air at 150?°C for 2?h. The spectral, morphological and thermal properties of the materials have been studied using different physicochemical techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX), high-resolution transmission electron microscopy (HR-TEM), Fourier infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), diffrential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). From the Debye–Scherrer equation the calculated particle size of Sr(C2O4)(H2O)2], SrCO3 and Ag-NPs@SrCO3 are 62.1, 58.7, and 58.5?nm, respectively. The SEM and TEM images indicate tetragonal structure of [Sr(C2O4)(H2O)2] while SrCO3 and Ag-NPs@SrCO3 appeared as cubic structures. The calculated energy band gap of SrCO3 and Ag-NPs@SrCO3 using the Tauc equation are estimated at 5.9 and 4.7?eV, respectively. The adsorption capacity of the materials is tested for the adsorption of Congo red anionic dye and exhibited promising results. The adsorption capacity followed the order Ag-NPs@SrCO3>SrCO3>?[Sr(C2O4)(H2O)2] with efficiencies of 73.90, 67.55, and 60.50%, respectively.  相似文献   

11.
Journal of Sol-Gel Science and Technology - Polycrystalline spinel nickel ferrite nanoparticles were prepared by employing sol–gel auto combustion method. The as-prepared nanoparticles were...  相似文献   

12.
Simple methods of preparing silver and gold nanoshells on the surfaces of monodispersed polystyrene microspheres of different sizes as well as of silver nanoshells on free-standing gold nanoparticles are presented. The plasmon resonance absorption spectra of these materials are presented and compared to predictions of extended Mie scattering theory. Both silver and gold nanoshells were grown on polystyrene microspheres with diameters ranging from 188 to 543 nm. The commercially available, initially carboxylate-terminated polystyrene spheres were reacted with 2-aminoethanethiol hydrochloride (AET) to yield thiol-terminated microspheres to which gold nanoparticles were then attached. Reduction of silver nitrate or gold hydroxide onto these gold-decorated microspheres resulted in increasing coverage of silver or gold on the polystyrene core. The nanoshells were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–vis spectroscopy. By varying the core size of the polystyrene particles and the amount of metal (silver or gold) reduced onto them, the surface plasmon resonance of the nanoshell could be tuned across the visible and the near-infrared regions of the electromagnetic spectrum. Necklace-like chain aggregate structures of gold core–silver shell nanoparticles were formed by reducing silver nitrate onto free citrate-gold nanoparticles. The plasmon resonance absorption of these nanoparticles could also be systematically tuned across the visible spectrum.  相似文献   

13.
Ba[Zr0.25Ti0.75]O3 (BZT) thin films were synthesized by the complex polymerization method and heat treated at 400 °C for different times and at 700 °C for 2 h. These thin films were analyzed by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, field emission gun-scanning electron microscopy (FEG-SEM) and atomic force microscopy (AFM), Ultraviolet–visible (UV–vis) absorption spectroscopy, electrical and photoluminescence (PL) measurements. FEG-SEM and AFM micrographs showed that the microstructure and thickness of BZT thin films can be influenced by the processing times. Dielectric constant and dielectric loss of BZT thin films heat treated at 700 °C were approximately 148 and 0.08 at 1 MHz, respectively. UV–vis absorption spectra suggested the presence of intermediary energy levels (shallow and deep holes) within the band gap of BZT thin films. PL behavior was explained through the optical band gap values associated to the visible light emission components.  相似文献   

14.
Four Cd(II)- and Cu(II)-containing coordination polymers (CPs) based on a multidentate N-donor ligand and varied dicarboxylate anions, [Cd(3,3′-tmbpt)(p-bdc)]·2.5H2O (1), [Cd(3,3′-tmbpt)(m-bdc)]·2H2O (2), [Cu(3,3′-tmbpt)(m-bdc)]·H2O (3), and [Cu(3,3′-tmbpt)(p-bdc)]·2H2O (4), where 3,3′-tmbpt = 1 ? ((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole, p-H2bdc = 1,4-benzenedicarboxylic acid, and m-H2bdc = 1,3-benzenedicarboxylic acid, have been prepared hydrothermally. The structures of the compounds were determined by single-crystal X-ray diffraction analyses and further characterized by infrared spectra and elemental analyses. Compound 1 exhibits a 3-D twofold interpenetrating framework with a 65·8 CdSO4 topology. Compound 2 is a 2-D layer containing meso-helical chains with a 44·62 sql topology. Compound 3 shows a 1-D → 3-D interdigitated architecture while 4 displays a 2-D → 3-D interdigitated architecture. The structural differences of the compounds indicate that the dicarboxylate anions and the central metal ions play important roles in the resulting structures of CPs. Optical band gaps and solid-state photoluminescent properties have also been studied.  相似文献   

15.
The morphology of porous silicon (PS) layers produced by electrochemical etching of n-type (100) silicon (Si) at different low current densities was studied using SEM, image J analysis and WSxM software. From FTIR spectroscopy analysis, the Si dangling bonds of the as-prepared PS layer have large amount of Hydrogen to form weak Si–H bonds. From Raman analysis, a full width half maximum (FWHM) of the Raman peak was gradually increased with increased current density, shifted towards lower energies due to reduce of crystallite size, the crystallite size in the PS varied from 63 nm to 20 nm depending on the current density. The optical response of the PS layer has been performed by the absorbance and Photoluminescence was studied experimentally in the visible range. The optical absorption and photo luminescence in PS is due to excitonic recombination between the defect states as well as on the surface of nanocrystals, and this was attributed to the presence of silicon hydride species which are confirmed by FTIR spectra. The red shift was observed in absorbance and Photoluminescence due to decrease in the size of Si crystallites and growth of Si=O bonds. The contact angle varied from 76° to 120.1°. From the wettability studies, the surface nature of the PS was converted from hydrophilic to hydrophobic when the current density increased.  相似文献   

16.
This paper describes the feasibility of employing capillary electrophoresis (CE) to separate silver particles in nanometer regimes. We have found that the addition of an anionic surfactant, sodium dodecyl sulphate (SDS), to the running electrolyte prevents coalescence of the silver particles during the process, which improves the separation performance; the concentration of SDS required for optimal silver nanoparticle separation is ca. 20 mM. By monitoring the electropherograms using a diode-array detection (DAD) system, we have also investigated the separation of suspended silver nanorods with respect to their shapes. Our results demonstrate that the combination of CE and DAD is a powerful one for the separation and characterization of various silver nanoparticles.  相似文献   

17.
A typical silver cubane-like heteroselenometallic cluster, (μ3-WSe4)Ag3(PPh3)3Cl·0.5SePPh3, was synthesized from reaction of [Et4N]2[WSe4] and Ag(PPh3)2(NO3) in CH2Cl2 solution and structurally characterized by X-ray crystallography. The compound crystallizes in the trigonal space group R3 with a=16.258(4), b=22.80(3) Å, V=5217(7) Å3, and Z=3. The structure contains a strongly distorted cubane-like {WAg3Se3Cl} core. The coordination geometries of the W center and each Ag atom are tetrahedral. The mean W-Ag separation is 3.010(3) Å. Optical nonlinearity of this cubane-like cluster was studied. Large optical limiting effect with threshold of 0.45 J/cm2 was observed with the laser pulses of 7 ns at 532 nm.  相似文献   

18.
Synthesis of Gd doped Srx O: CdO (x = 1.4, 1.6, 1.8) nanostructures (NS) was achieved through the coprecipitation method by using CTAB (cetyl trimethyl ammonium bromide) with the purpose to investigate the effect of Gd doping on the optical, structural, morphological, and photoluminescence properties at room temperature. Mixed phase of tetragonal crystal structure verified via X-ray diffraction technique, no structural variation was observed except lattice distortion. Size of the crystallites (D), morphology studied by SEM (scanning electron microscopy) analysis, nanoparticles (NPs) crystalized roughly flake-like morphology with homogeneous particle distribution centered at ~ 78 nm, ~56 nm, ~65 nm, ~88 nm for pure and Gd (x-1) doped Sr xO: CdO nanostructure, respectively. Fourier transform infrared spectroscopic investigation (FTIR) revealed the presence of Gd–O–Gd, Cd–O, Sr–O, and OH peaks appeared at ~1321 cm ?1, ~1550 cm ?1, ~1400 cm ?1–3300 cm ?1 with small variation in vibration modes due to Gd doping. Optical absorptivity observed in the range of 325 nm–359 nm (redshifted) with absorption edges at 346 nm, 364 nm, and 380 nm for Gd (x-1) doped Sr xO: CdO nanostructure, respectively. This redshift on the bandgap was discussed in terms of new band levels below conduction band. The energy gap was calculated using Kubelka-Munk theory and was found to be in the range of 3.22 eV–2.61 eV. X-ray photoelectron spectroscopy (XPS) performed to determine chemical composition and binding energies of Gd 3d 3/2, Sr 3d 3/2, and Cd 3d 3/2, O1s, and C1s observed at 150.8 eV, 141.6 eV, 411.0 eV, 530.4 eV, and 285.6 eV indicating Gd+3 ion replaces Sr+2 in all concentrations. Our results showed that Gd-doped Sr xO: CdO nanoparticles exhibited enhanced photoluminescence (PL) properties in contrast to the pure Gd2O3 with Gd+3 randomly incorporated into crystal structure, probably in tetrahedral sites. The composition of Gd 0.6 doped Sr x O: CdO NS exhibited photoluminescent emission spectra, peaks centered at 433 ± 3 nm, 449 ± 3 nm, and 469 ± 2 nm (λ excitation = 318 nm) and for Gd 0.8 doped Sr x O: CdO nanostructure showed broad emission peak at 412 ± 2 nm to 433 ± 2 nm (λ excitation = 380 nm), which indicates a reduction in defects with an increase in Gd doping. The transitions can be ascertained with shielding of 4f shells of Gd +3 ions by 6s, 5d shells by the interaction of other Gd +3 ions.  相似文献   

19.
20.
Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD) and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号