首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of oxidation of dimethyl sulfoxide (DMSO) by chloramine-T (CAT) is studied in HClO4 and NaOH media with OsO4 as a catalyst in the latter medium. In acid medium, the rate law is -d [CAT]/dt = k [CAT][DMSO][H+]. Alkali retards the reaction and the rate law takes the form -d [CAT]/dt = k [CAT][DMSO][OsO4]/[NaOH], but is reduced to -d [CAT]/dt = k [CAT][DMSO] at higher alkali concentrations. The reaction is subjected to changes in (a) ionic strength, (b) concentrations of added neutral salts, (c) concentrations of added reaction product, (d) dielectric constant, and (e) solvent isotope effect, and the subsequent effects on the reaction rate are studied. The reaction mechanism in acid medium assumes an electrophilic attack by the free acid RNHCl (CAT′) at the sulfur site in DMSO, forming a reaction intermediate which subsequently decomposes to dimethyl sulfone on hydrolysis. Formation of a cyclic complex between RNHCl and OsO4 which interacts with the substrate in a slow step explains the observed results in alkaline medium. The simplification of the rate equation at higher alkali concentrations is attributed to a direct reaction between chloramine-T and the substrate.  相似文献   

2.
The kinetics of oxygen uptake in the cumyl peroxide-initiated oxidation of cyclohexanol (373 K, o-dichlorobenzene) is studied. The parameters of the oxidizability of k p (2k t )?0.5 (which depend on [RH]) and the rate constants of the bi- and trimolecular reactions of chain initiation (k 0 = 1.25 × 10?8 L/(mol s) and k0 = 2.5 × 10?9 L2/(mol2 s), respectively) are determined by solving the inverse kinetic problem. It is demonstrated that the quadratic-law recombination of peroxyl radicals during cyclohexanol oxidation also occurs without chain termination. The recombination rates of peroxyl radicals with and without chain termination (k′/k t ) are found to grow with increasing [RH], reaching their maxima at [RH] = 1.0 mol/L, and to diminish subsequently. We conclude that this can be attributed to changes in the ratio between the propagating peroxyl radicals (hydroperoxyl and 1-hydroxycyclohexylperoxyl) in the reaction medium.  相似文献   

3.
Summary Oxidation of Mn aq 2+ by HSO 5 in acetate buffer to manganese(IV) is autocatalytic, and obeys a rate expression of the general form -d[MnII]/dt = k0[MnII] + k1[MnII][MnOx]. The first-order (k0) and heterogenetic (k1) rate constants show first-order dependences on [HSO 5 ] and on 1/[H+]. The reaction is catalyzed by the addition of the chelating ligand glycine; k1 shows a first-order dependence on [glycine] at a fixed pH. This catalysis is ascribed to complexation, whereby the redox potential for Mn(gly) n (2–n)+ is lower than that for Mn aq 2+ , facilitating oxidation. The stoichiometry of the reaction is Mn2+: HSO 5 = 11, and the manganese(IV) oxide formed is of battery-active grade. Purity of the recovered product is not affected by the presence of high concentrations of natural sugars in the initial solution.  相似文献   

4.
The kinetics of the hydrolysis of fenuron in sodium hydroxide has been investigated spectrometrically in an aqueous medium and in cationic micelles of cetyltrimethylammonium bromide (CTAB) medium. The reaction follows first‐order kinetics with respect to [fenuron] in both the aqueous and micellar media. The rate of hydrolysis increases with the increase in [NaOH] in the lower concentration range but shows a leveling behavior at higher concentrations. The reaction followed the rate equation, 1/kobs = 1/k + 1/(kK[OH?]), where kobs is the observed rate constant, k is rate constant in aqueous medium, and k is the equilibrium constant for the formation of hydroxide addition product. The cationic CTAB micelles enhanced the rate of hydrolytic reaction. In both aqueous and micellar pseudophases, the hydrolysis of fenuron presumably occurs via an addition–elimination mechanism in which an intermediate hydroxide addition complex is formed. The added salts decrease the rate of reaction. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 638–644, 2007  相似文献   

5.
The kinetics of oxygen uptake in the azobisisobutyronitrile-initiated oxidation of 2-hydroxycy-clohexanone (RCH(OH)C(O)R) at 323 K has been investigated (chlorobenzene solvent, [RCH(OH)C(O)R] = 0.15-1.30 mol/L, initiation rate of w i = 0.016–0.473 mol L?1 s?1). The effective oxidizability parameter k p, eff(2k t,eff)?0.5 has been determined by solving the inverse kinetic problem using the entire data array obtained while varying [RCH(OH)C(O)R] and w i. The rate constants of chain propagation and termination and the equilibrium constant of the addition of the hydroxyperoxyl radical to the ketoalcohol have been derived from the dependence of the oxidizability parameter on the substrate concentration. The rate constant of bimolecular chain initiation has been calculated to be k 0 = 9.7 × 10?7 L mol?1 s?1. The ratio of the rate constants of quadratic-law peroxyl radical recombination reactions without and with chain termination (k eff′/k t,eff′) increases with increasing [RCH(OH)C(O)R], passes through a maximum at a substrate concentration of 0.8 mol/L, and then falls off. It is demonstrated that this effect is due to the variation of the proportions of the hydroperoxyl and organic (1-hydroxy-2-oxocyclohexylperoxyl or 1,2-dihydroxy-1-cyclo-hexylperoxyl) radicals in the reaction medium.  相似文献   

6.
The kinetics of oxidation of ferrocyanide by N-bromosuccinimide (NBS) has been studied spectrophotometrically in aqueous acidic medium over temperature range 20–35 °C, pH = 2.8–4.3, and ionic strength = 0.10–0.50 mol dm−3 over a range of [Fe2+] and [NBS]. The reaction exhibited first order dependence on both reactants and increased with increasing pH, [NBS], and [Fe2+]. The rate of oxidation obeys the rate law: d[Fe3+]/dt = [Fe(CN)6]4–[HNBS+]/(k 2 + k 3/[H+]). An outer-sphere mechanism has been proposed for the oxidation pathway of both protonated and deprotonated ferrocyanide species. Addition of both succinimide and mercuric acetate to the reaction mixture has no effect on the reaction rate under the experimental conditions. Mercuric acetate was added to the reaction mixture to act as scavenger for any bromide formed to ensure that the oxidation is entirely due to NBS oxidation.  相似文献   

7.
Li Zheng  Jun-feng Song 《Talanta》2009,79(2):319-128
A modified electrode Ni(II)-BA-MWCNT-PE has been fabricated by electrodepositing nickel(II)-baicalein [Ni(II)-BA] complex on the surface of multi-wall carbon nanotube paste electrode (MWCNT-PE) in alkaline solution. The Ni(II)-BA-MWCNT-PE exhibits the characteristic of improved reversibility and enhanced current responses of the Ni(III)/Ni(II) couple compared with Ni(II)-BA-CPE. It also shows good electrocatalytic activity toward the oxidation of hydrazine. Kinetic parameters such as the electron transfer coefficient α, rate constant ks of the electrode reaction, the diffusion coefficient D of hydrazine and the catalytic rate constant kcat of the catalytic reaction are determined. Moreover, the catalytic currents present linear dependence on the concentration of hydrazine from 2.5 μM to 0.2 mM by amperometry. The detection limit and sensitivity are 0.8 μM and 69.9 μA mM−1, respectively. The modified electrode for hydrazine determination is of the property of simple preparation, good stability, fast response and high sensitivity.  相似文献   

8.
The kinetics of oxidation of cis-[CrIII(gly)2(H2O)2]+ (gly = glycinate) by $ {\text{IO}}_{ 4}^{ - } $ has been studied in aqueous solutions. The reaction is first order in the chromium(III) complex concentration. The pseudo-first-order rate constant, k obs, showed a small change with increasing $ \left[ {{\text{IO}}_{ 4}^{ - } } \right] $ . The pseudo-first-order rate constant, k obs, increased with increasing pH, indicating that the hydroxo form of the chromium(III) complex is the reactive species. The reaction has been found to obey the following rate law: $ {\text{Rate}} = 2k^{\text{et}} K_{ 3} K_{ 4} \left[ {{\text{Cr}}\left( {\text{III}} \right)} \right]_{t} \left[ {{\text{IO}}_{ 4}^{ - } } \right]/\left\{ {\left[ {{\text{H}}^{ + } } \right] + K_{ 3} + K_{ 3} K_{ 4} \left[ {{\text{IO}}_{ 4}^{ - } } \right]} \right\} $ . Values of the intramolecular electron transfer constant, k et, the first deprotonation constant of cis-[CrIII(gly)2(H2O)2]+, K 3 and the equilibrium formation constant between cis-[CrIII(gly)2(H2O)(OH)] and $ {\text{IO}}_{ 4}^{ - } $ , K 4, have been determined. An inner-sphere mechanism has been proposed for the oxidation process. The thermodynamic activation parameters of the processes involved are reported.  相似文献   

9.
We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP ([B] = N,N′-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaboryl), to its linkage isomer, a phosphaketenyl-borane, [B]PCO. Mechanistic insight into this unusual isomerisation was gained through a series of stoichiometric reactions of [B]OCP with isocyanides and theoretical calculations at the Density Functional Theory (DFT) level. [B]PCO decarbonylates under photolytic conditions to afford a novel boryl-substituted diphosphene, [B]P Created by potrace 1.16, written by Peter Selinger 2001-2019 P[B]. This reaction proceeds via a transient triplet phosphinidene which we have been able to observe spectroscopically by Electron Paramagnetic Resonance (EPR) spectroscopy.

We report on the (tert-butyl)isocyanide-catalysed isomersation of a phosphaethynolato-borane, [B]OCP, to its linkage isomer, a phosphaketenyl-borane, [B]PCO.  相似文献   

10.
R. CurciF. Di Furia 《Tetrahedron》1972,28(14):3905-3913
The influence of OH concentration, in the solvent medium dioxane-water 40:60 at 25·0, on the oxidation rates of diphenylphosphine oxide (DPPO) by t-BuOOH, H2O2 and p-nitroperoxybenzoic acid, and of bis-p-tolylphosphine oxide by t-BuOOH has been investigated. For the oxidation of the phosphorus substrates by the hydroperoxides above, the rate law found (R = k2″[Ar2PHO] [ROO]) differs from the rate law confirmed to hold for the oxidation of DPPO by peroxyacids in alkaline media, i.e.: R = (k2″ + k3[OH−])[Ar2PHO] [RCO3]. This is interpreted on the basis of one common reaction mechanism involving formation of an intermediate of similar structure, wherein a change in the rate controlling step is likely to occur on passing from p-O2N·C6H4CO3 to t-BuOO. In the same solvent medium, pKa′ values for t-BuOOH and H2O2 have been estimated.  相似文献   

11.
The kinetics of the initiated oxidation of acrylic acid and methyl methacrylate in the liquid phase were studied volumetrically by measuring oxygen uptake during the reaction. Both processes proceed via the chain mechanism with quadratic-law chain termination. The oxidation rate is described by the equation w = k 2/(2k 6)1/2[monomer]w i 1/2 , where w i is the initiation rate and k 2 and k 6 are the rate constants of chain propagation and termination. The parameter k 2/(2k 6)1/2 is 7.58 × 10?4 (l mol?1 s?1)1/2 for acrylic acid oxidation and 2.09 × 10?3 (l mol?1 s?1)1/2 for the oxidation of methyl methacrylate (T = 333 K). For the oxidation of acrylic acid, k 2 = 2.84 l mol?1 s?1 (T = 333 K) and the activation energy is E 2 = 54.5 kJ/mol; for methyl methacrylate oxidation, k 2 = 2.96 l mol?1 s?1 (T = 333 K) and E 2 = 54.4 kJ/mol. The enthalpies of the reactions of RO 2 ? with acrylic acid and methyl methacrylate were calculated, and their activation energies were determined by the intersecting parabolas method. The contribution from the polar interaction to the activation energy was determined by comparing experimental and calculated E 2 values: ΔE μ = 5.7 kJ/mol for the reaction of RO 2 ? with acrylic acid and ΔE μ = 0.9 kJ/mol for the reaction of RO 2 ? with methyl methacrylate. Experiments on the spontaneous oxidation of acrylic acid provided an estimate of the rate of chain initiation via the reaction of oxygen with the monomer: w i,0 = (3.51 ± 0.85) × 10?11 mol l?1 s?1 (T = 333 K).  相似文献   

12.
The kinetics of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation by sodium periodate in an aqueous solution was studied. For the auto-acceleration regime, the experimental data correspond to the kinetic equation w t = k[P] t 1/2 [IO 4 ? ] t 1/2 [TMB]0, where w t is the accumulation rate of the meriquinoid product (P) of TMB oxidation and [P]t and [IO 4 ? ]t are the concentrations of product P and periodate, respectively, at time t. A radical chain mechanism was proposed; the mechanism explains the experimental kinetic equation and complies with the observed inhibiting effect of metal ions (Zn, Cd) in this reaction.  相似文献   

13.
Summary The stoichiometries, kinetics and mechanisms of oxidation of (NH2)2CS (1) and (Me2N)2CS (2) to the corresponding disulphides by CoIIIM (M = W12O40 ∞-) in aqueous HC1O4 were investigated. The reaction with (1) follows the empirical rate law- d[oxidant] = k[reductant][oxidant] where k = 12.5 ± 0.3 m−1 s−1 at 25° C, while that with (2) follows the equation- d[oxidant] = a + b [reductant] [reductant] [oxidant] where a = 5.4 × 104 M−1s−1 and b = 3.3 × 106M−2 s−1 at 25° C. Free radicals are important in the reactions and possible reaction mechanisms are suggested and discussed.  相似文献   

14.
Tyrosinase was found to catalyze the oxidation of phenylhydrazine to phenol in a reaction that did not resemble those typically performed by tyrosinase. The kinetics of this reaction was investigated by measuring the initial velocity of the formation of phenol (25 °C). The values of k cat and K M for the oxidation of phenylhydrazine were obtained as 11.0 s?1 and 0.30 mM, respectively. The generation of superoxides during the oxidation of phenylhydrazine by tyrosinase was monitored by nitroblue tetrazolium (NBT) assay. In the phenylhydrazine-tyrosinase reaction, 1 mol O2 was required for the production of 1 mol phenol and 1/6 mol superoxide. The decomposition of superoxide by superoxide dismutase enhanced the rate constant of the oxidation of phenylhydrazine. Phenol formed in the oxidation of phenylhydrazine by tyrosinase was further oxidized by tyrosinase to an o-quinone, after the oxidation of phenylhydrazine by tyrosinase was almost completed.  相似文献   

15.
A spectrophotometric study of the kinetics and mechanism of the oxidation of malic acid (Mal) by chromium(VI) catalyzed by 2,2′-bipyridyl (bpy) in aqueous acidic medium was conducted in a temperature range of ~298 to 313 K. This reaction was found to be pseudo-first order with respect to Cr(VI) and first order with respect to malic acid. Under the conditions of the pseudo-first order ([Mal]o ? [Cr(VI)]o), the observed rate constant (k obs) increased with the increase in [H+] and [bpy]. There was a weak negative salt effect. Based on the experimental results, a possible reaction mechanism for this oxidation catalyzed by bpy is proposed. The rate equation derived from this mechanism can explain all the experimental phenomena.  相似文献   

16.
The kinetics of oxidation of 2-aminoethanol and 3-amino-1-propanol by diperiodatoargentate(III) (DPA) were carried out spectrophotometrically in alkaline medium in the temperature range of 293.2-308.2 K. The reaction showed first order with respect to [DPA] and each reductant. The observed rate constant (k obs) decreased with the increase of [IO4 -] and increased with the increase of [OH-]. Increasing ionic strength of the medium decreased the rate. Investigations of the reaction at different temperatures allowed the determination of the activation parameters for the slow step of proposed mechanism. The proposed mechanism and the derived rate laws found consistent with the observed kinetics.  相似文献   

17.
The kinetics of the oxidation of malachite green (MG+) by Fe(III) were investigated spectrophotometrically by monitoring the absorbance change at 618 nm in aqueous and micellar media at a temperature range 20–40 °C; I = 0.10 mol dm?3 for [H+] range (2.50–15.00) × 10?4 mol dm?3. The rate of reaction increases with increasing [H+]. The reaction was carried out under pseudo-first-order conditions by taking the [Fe(III)] (>10-fold) the [MG+]. A mechanism of the reaction between malachite green and Fe(III) is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law as follows: Rate = (k 4 + K 1 k 5[H+]) [MG+][Fe(III)]. The effect of surfactants, such as cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecylsulfate (SDS, an anionic surfactant), on the reaction rate has been studied. CTAB has no effect on the rate of reaction while SDS inhibits it. Also, the effect of ligands on the reaction rate has been investigated. It is proposed that electron transfer proceeds through an outer-sphere mechanism. The enthalpy and the entropy of the activation were calculated using the transition state theory equation.  相似文献   

18.
The decomposition rate of oxalate by hydrogen peroxide has been investigated by a KMnO4 titration method. The rate equation for decomposition of hydrogen peroxide in the aqueous phase is 1n([H2O2]/[H2O2]0)=?k1·t, where k1=0.2, for [H+]<2M, k1=0.2+0.34([H+]?2), for [H+]>2M. As the acidity increases over 2M, an acid catalysis effect appeard. The new rate equation proposed for the decomposition of oxalate by hydrogen peroxide is $$ - \frac{d}{{dt}}X_{[OX]} = k_2 [H_2 O_2 ]_0 (1 - X_{[OX]} )(e^{ - k_1 t} - \frac{{[OX]_0 }}{{[H_2 O_2 ]_0 }}X_{[OX]} )$$ The rate constant for decomposition of oxalate, k2, increased with nitric acid concentration and the effect of hydrogen ion concentration was expressed as k2=a[H+]n, where the values fora andn were a=1.54, n=0.3 at [H+]<2M, a=0.31, n=2.5 at [H+]>2M, respectively.  相似文献   

19.
《European Polymer Journal》1986,22(12):979-982
Polymerization of methyl methacrylate was studied using manganic laurate in the presence of organic thiols as initiators. The thiols used were 1-propane thiol and 2-propane thiol and the solvent was carbon tetrachloride. The rate of polymerization satisfied the expression RP = k1 [manganic laurate]1/2 [thiol]1/2 [monomer]3/2 where k1 is a constant. Spectroscopic investigations indicated complex formation between the monomer and manganic laurate. A reaction scheme is suggested.  相似文献   

20.
The kinetics of oxidation of ethanolamines, monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA), by sodium N‐bromobenzenesulfonamide or bromamine‐B (BAB) in alkaline buffer medium (pH 8.7–12.2) has been studied at 40°C. The three reactions follow identical kinetics with first‐order in [oxidant] and fractional‐order each in [substrate] and [OH?]. Under comparable experimental conditions, the rate of oxidation increases in the order: DEA > TEA > MEA. The added reaction product, benzenesulfonamide, retards the reaction rate. The addition of halide ions and the variation of ionic strength of the medium have no significant effect on the rate. The dielectric effect is negative. The solvent isotope effect k′(H2O)/k′(D2O) ≈ 0.92. Activation parameters for the composite reaction and for the rate‐limiting step were computed from the Eyring plots. Michaelis‐Menten type of kinetics is observed. The formation and decomposition constants of ethanolamine‐BAB complexes are evaluated. An isokinetic relationship is observed with β = 430 K indicating that enthalpy factors control the rate. For each substrate, a mechanism consistent with the kinetic data has been proposed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 480–490, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号