共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In this paper, we reformulate a nonlinear semidefinite programming problem into an optimization problem with a matrix equality
constraint. We apply a lower-order penalization approach to the reformulated problem. Necessary and sufficient conditions
that guarantee the global (local) exactness of the lower-order penalty functions are derived. Convergence results of the optimal
values and optimal solutions of the penalty problems to those of the original semidefinite program are established. Since
the penalty functions may not be smooth or even locally Lipschitz, we invoke the Ekeland variational principle to derive necessary
optimality conditions for the penalty problems. Under certain conditions, we show that any limit point of a sequence of stationary
points of the penalty problems is a KKT stationary point of the original semidefinite program.
Communicated by Y. Zhang
This work was supported by a Postdoctoral Fellowship of Hong Kong Polytechnic University and by the Research Grants Council
of Hong Kong. 相似文献
3.
时贞军 《数学物理学报(A辑)》2004,4(6):675-682
该文提出一种无约束优化非线性共轭梯度法,证明了精确线性 搜索下的全局收敛性。当目标函数为一致凸函数时,证明了算法具有线性收敛速度。数值实验表明算法对于求解实际问题是有效的。 相似文献
4.
基于Fischer-Burmeister函数,本文将半定规划(SDP)的中心路径条件转化为非线性方程组,进而用SDCP的非内点连续化方法求解之.证明了牛顿方向的存在性,迭代点列的有界性.在适当的假设条件下,得到算法的全局收敛性及局部二次收敛率.数值结果表明算法的有效性. 相似文献
5.
The presence of complementarity constraints brings a combinatorial flavour to an optimization problem. A quadratic programming problem with complementarity constraints can be relaxed to give a semidefinite programming problem. The solution to this relaxation can be used to generate feasible solutions to the complementarity constraints. A quadratic programming problem is solved for each of these feasible solutions and the best resulting solution provides an estimate for the optimal solution to the quadratic program with complementarity constraints. Computational testing of such an approach is described for a problem arising in portfolio optimization.Research supported in part by the National Science Foundations VIGRE Program (Grant DMS-9983646).Research partially supported by NSF Grant number CCR-9901822. 相似文献
6.
Interior-Point Algorithms for Semidefinite Programming Based on a Nonlinear Formulation 总被引:2,自引:0,他引:2
Samuel Burer Renato D.C. Monteiro Yin Zhang 《Computational Optimization and Applications》2002,22(1):49-79
Recently in Burer et al. (Mathematical Programming A, submitted), the authors of this paper introduced a nonlinear transformation to convert the positive definiteness constraint on an n × n matrix-valued function of a certain form into the positivity constraint on n scalar variables while keeping the number of variables unchanged. Based on this transformation, they proposed a first-order interior-point algorithm for solving a special class of linear semidefinite programs. In this paper, we extend this approach and apply the transformation to general linear semidefinite programs, producing nonlinear programs that have not only the n positivity constraints, but also n additional nonlinear inequality constraints. Despite this complication, the transformed problems still retain most of the desirable properties. We propose first-order and second-order interior-point algorithms for this type of nonlinear program and establish their global convergence. Computational results demonstrating the effectiveness of the first-order method are also presented. 相似文献
7.
In this paper, we describe how to reformulate a problem that has second-order cone and/or semidefiniteness constraints in
order to solve it using a general-purpose interior-point algorithm for nonlinear programming. The resulting problems are smooth
and convex, and numerical results from the DIMACS Implementation Challenge problems and SDPLib are provided.
Received: March 10, 2001 / Accepted: January 18, 2002 Published online: September 27, 2002
Key Words. semidefinite programming – second-order cone programming – interior-point methods – nonlinear programming
Mathematics Subject Classification (2000): 20E28, 20G40, 20C20 相似文献
8.
Several algorithms are available in the literature for finding the entire set of Pareto-optimal solutions of Multiobjective Linear Programmes (MOLPs). However, all of them are based on active-set methods (simplex-like approaches). We present a different method, based on a transformation of any MOLP into a unique lifted Semidefinite Program (SDP), the solutions of which encode the entire set of Pareto-optimal extreme point solutions of any MOLP. This SDP problem can be solved, among other algorithms, by interior point methods; thus unlike an active set-method, our method provides a new approach to find the set of Pareto-optimal solutions of MOLP. 相似文献
9.
10.
本文首先将半定规划转化为一个变分不等式问题,在满足单调性和Lipschitz连续的条件下,提出了一种基于Korpelevich-Khobotv算法的新的预测-校正算法,并给出算法的收敛性分析. 相似文献
11.
本文对半定规划(SDP)的最优性条件提出一价值函数并研究其性质.基此,提出半定规划的PRP+共轭梯度法.为得到PRP+共轭梯度法的收敛性,提出一Armijo-型线搜索.无需水平集有界及迭代点列聚点的存在,算法全局收敛. 相似文献
12.
对于线性型多目标半定规划问题,引进加权中心路径的概念,并利用单目标半定规划的中心路径法,提出了求解多目标半定规划问题的加权中心路径法,先得型对一个叔向量的有效解,然后在此基础上,提出了通过一次迭代得到对应一定范围内其他任意权向量的有效解的一步修正方法. 相似文献
13.
Global Convergence Analysis of Line Search Interior-Point Methods for Nonlinear Programming without Regularity Assumptions 总被引:2,自引:0,他引:2
As noted by Wächter and Biegler (Ref. 1), a number of interior-point methods for nonlinear programming based on line-search strategy may generate a sequence converging to an infeasible point. We show that, by adopting a suitable merit function, a modified primal-dual equation, and a proper line-search procedure, a class of interior-point methods of line-search type will generate a sequence such that either all the limit points of the sequence are KKT points, or one of the limit points is a Fritz John point, or one of the limit points is an infeasible point that is a stationary point minimizing a function measuring the extent of violation to the constraint system. The analysis does not depend on the regularity assumptions on the problem. Instead, it uses a set of satisfiable conditions on the algorithm implementation to derive the desired convergence property.Communicated by Z. Q. LuoThis research was partially supported by Grant R-314-000-026/042/057-112 of National University of Singapore and Singapore-MIT Alliance. We thank Professor Khoo Boo Cheong, Cochair of the High Performance Computation Program of Singapore-MIT Alliance, for his support 相似文献
14.
对非线性规划问题的处理通常采用罚函数法,使用罚函数法的困难在于参数的选取。本文提出了一种解非线性规划问题的新PSO算法(NSDPSO),该方法融入了一维搜索和动态调节技术,使NSDPSO很好地克服了标准PSO算法在前期收敛较快而在后期易陷入局部最优的缺陷。另外,文中还给出了一种新的适应度函数及选择算子,使算法在选择下一代时保持群体中不可行解的一定比例,这样不但能有效地增加群体的多样性,而且可以避免传统的过度惩罚,使群体向最优解逼近。最后的数据实验表明该算法对非线性规划问题求解是非常有效的。 相似文献
15.
非线性约束条件下一个超线性收敛的可行方法 总被引:3,自引:0,他引:3
在本文中,我们对非线性不等式约束条件下的非线性优化问题给出了一个新的SQP类可行方法.此算法不但结构简单、易于计算,并且在适当的假设条件下,我们证明了算法具有全局收敛性及超线性收敛性 相似文献
16.
针对具有不等式约束的非线性规划,结合罚内点途径,且在牛顿法的基础上,提出一个算法.通过引入辅助变量松弛不等式约束,把约束集合转化为两个集合的交集:一个是容易计算内点的,另一个是简单线性的.这样就提出了解决此问题的一个新的障碍和罚函数方法且给出了其方法的一般收敛性结果.对接近度量和算法参数的选择途径也进行了研究,从而程序上保证了一旦障碍参数被更新,算法仅需要有限牛顿步就能达到近似中心.数值例子说明了方法的有效性. 相似文献
17.
Acta Mathematicae Applicatae Sinica, English Series - In this paper, we present a QP-free algorithm without a penalty function or a filter for nonlinear semideflnite programming. At each iteration,... 相似文献
18.
解非线性约束拟凸规划的一个梯度投影法 总被引:4,自引:0,他引:4
目前国内外所流行的梯度投影法(包括Rosen的原有算法和一些修正算法)还存在以下几个问题:一、要增加Polak程序以保证算法的收僉性。二、在计算投影梯度时,每步一般要作两次投影。三、对于非线性约束问题,负梯度投影方向是不可行的,因此必须在此方向的基础上构造出能保证算法收歛的新可行下降方向。而目前为构造出这个新方向所作的计算都比较复杂。 1981年[5]提出了一个处理线性约束条件的梯度投影法,基本上解决了线 相似文献
19.
研究无约束优化问题的共轭梯度算法,提出了一种计算主要参数的新形式,分析了Wolfe搜索下该算法的全局收敛性. 相似文献
20.
We introduce a discrete penalty called Boolean Penalty to 0–1 constrained nonlinear programming (PNLC-01). The main importance of this Penalty function are its properties which allow us to develop algorithms for the PNLC-01 problem. Optimality conditions, and numerical results are presented. 相似文献