首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Phua PB  Lai WJ  Lim YL  Tiaw KS  Lim BC  Teo HH  Hong MH 《Optics letters》2007,32(4):376-378
We propose a new scheme for generating radially polarized light by mimicking optical activity using linear birefringence. It involves a birefringent spirally varying retarder sandwiched between two orthogonally oriented quarter-wave plates. Using Poincaré sphere representation, we show that the polarization transformation of such a scheme is equivalent to that of a spirally varying optical activity and is capable of generating radially polarized light. We demonstrate the proof-of-concept using y-cut crystalline quartz.  相似文献   

2.
It is shown that the polarization states of optical spots at the nanoscale can be manipulated to various points on the Poincaré sphere using a plasmonic nanoantenna. Linearly, circularly, and elliptically polarized near-field optical spots at the nanoscale are achieved with various polarization states on the Poincaré sphere using a plasmonic nanoantenna. A novel plasmonic nanoantenna is illuminated with diffraction-limited linearly polarized light. It is demonstrated that the plasmonic resonances of perpendicular and longitudinal components of the nanoantenna and the angle of incident polarization can be tuned to obtain optical spots beyond the diffraction limit with a desired polarization and handedness.  相似文献   

3.
The polarization state of a light beam is related to its spin angular momentum and can be represented on the Poincaré sphere. We propose a sphere for light beams in analogous orbital angular momentum states. Using the Poincaré-sphere equivalent, we interpret the rotational frequency shift for light beams with orbital angular momentum [Phys. Rev. Lett. 80, 3217 (1998)] as a dynamically evolving geometric phase.  相似文献   

4.
易煦农  李瑛  刘亚超  凌晓辉  张志友  罗海陆 《物理学报》2014,63(9):94203-094203
本文提出了一种基于Metasurface产生任意柱矢量光束的方法.采用的Metasurface是在熔融石英上刻蚀空间变化的非周期光栅构成.非周期光栅会形成空变的有效双折射,从而对光场的偏振态空间分布进行调制.通过琼斯矩阵的方法分析得出这样的Metasurface可以将入射线偏振光转换为柱矢量光束,并且只需要改变入射线偏振光的偏振方向即可获得高阶庞加莱球赤道上任意一点的柱矢量光束.最后,用Metasurface搭建了一套简单、高效的柱矢量光束产生系统,实验结果与理论分析一致.  相似文献   

5.
We describe anon-abelian Berry phase in polarization optics, suggested by an analogy due to Nityananda between boosts in special relativity and the effect of elliptic dichroism on polarized light. The analogy permits a simple optical realization of the non-abelian gauge field describing Thomas rotation. We also show how Thomas rotation can be understood geometrically on the Poincaré sphere in terms of the Pancharatnam phase.  相似文献   

6.
R Simon  N Mukunda  ECG Sudarshan 《Pramana》1989,32(6):769-792
Hamilton’s theory of turns for the group SU(2) is exploited to develop a new geometrical representation for polarization optics. While pure polarization states are represented by points on the Poincaré sphere, linear intensity preserving optical systems are represented by great circle arcs on another sphere. Composition of systems, and their action on polarization states, are both reduced to geometrical operations. Several synthesis problems, especially in relation to the Pancharatnam-Berry-Aharonov-Anandan geometrical phase, are clarified with the new representation. The general relation between the geometrical phase, and the solid angle on the Poincaré sphere, is established.  相似文献   

7.
在低双折射光纤中,利用线偏振光满足的包含拉曼效应的非线性耦合模传输方程,通过引入斯托克斯参量,导出了斯托克斯参量所满足的耦合模传输方程.利用庞加莱球图示法,描述了拉曼增益效应作用下光波偏振态的演化,研究分析了拉曼效应对低双折射光纤中光波偏振态演化规律的影响.结果表明,当输入功率与运动常量满足一定关系时,拉曼增益效应改变了光波传输时其偏振态演化周期和偏振态的椭圆率.  相似文献   

8.
We present a geometrical analysis on the Poincaré sphere of the complex (amplitude and phase) response of polarization modulation systems. The proposed method can be applied to analyze non-cyclic polarization changes and, in particular, the phase is evaluated through the geometric Pancharatnam–Berry phase and the Pancharatnam connection between the initial and the final state. The method can be very useful to analyze and intuitively understand the complex modulation mechanism in polarization modulation devices such as liquid crystal displays.  相似文献   

9.
Tiberiu Tudor 《Optik》2010,121(13):1226-1235
This paper inscribes on the line of the efforts (sketched in the Introduction) in elaborating theoretical approaches alternative to the traditional Jones and Mueller matrix calculi in polarization optics. The more abstract, compact and elevated forms of linear algebra are not fully exploited yet in the polarization optics. A vectorial and pure operatorial Pauli algebraic approach to the interaction between the polarized light and the polarization optical systems is given. This is the most compact, adequate and elegant calculus corresponding to the well-known geometric handling of the polarization states and their interaction with the polarization devices on the Poincaré sphere. In this first paper, we deduce the Pauli algebraic vectorial forms of the operators corresponding to the orthogonal and nonorthogonal polarization devices and to all the states of light polarization. In the next paper we shall give the vectorial Pauli algebraic analysis of the interaction between the whole hierarchy of these devices and the various forms of polarized light.  相似文献   

10.
11.
The usage of Poincaré phase space for the representation of polarization-shaped femtosecond laser pulses is discussed. In these types of light fields the polarization state (i.e. ellipticity and orientation) changes as a function of time within a single laser pulse. Such deliberate variation can be achieved by frequency-domain femtosecond pulse shaping in which two polarization components are manipulated individually. Here it is shown how these light pulses can be represented as temporal trajectories through the ellipticity-orientation (Poincaré) phase space, whereas conventional light (either continuous-wave or pulsed) is determined by only one specific Poincaré location. General properties of parametric Poincaré trajectories are discussed, and their relation to experimentally accessible pulse-manipulation parameters (i.e. amplitudes and phases) determined. Specifically, it is shown how the maximum rate by which a given polarization state can be turned into a different one (at significant intensity levels) is limited by the spectral laser bandwidth. Apart from their direct usage in polarization-shaped pulse representation, Poincaré trajectories also form the basis for intuitive quasi-three-dimensional renderings of the electric field profile. There, the temporal evolution of polarization, intensity, and chirp is directly apparent in a single illustration. Received: 10 December 2002 / Published online: 24 April 2003 RID="*" ID="*"Corresponding author. Fax: +49-931/888-4906, E-mail: brixner@physik.uni-wuerzburg.de  相似文献   

12.
Park BH  Pierce MC  Cense B  de Boer JF 《Optics letters》2004,29(21):2512-2514
We present an analysis for polarization-sensitive optical coherence tomography that facilitates the unrestricted use of fiber and fiber-optic components throughout an interferometer and yields sample birefringence, diattenuation, and relative optic axis orientation. We use a novel Jones matrix approach that compares the polarization states of light reflected from the sample surface with those reflected from within a biological sample for pairs of depth scans. The incident polarization alternated between two states that are perpendicular in a Poincaré sphere representation to ensure proper detection of tissue birefringence regardless of optical fiber contributions. The method was validated by comparing the calculated diattenuation of a polarizing sheet, chicken tendon, and muscle with that obtained by independent measurement. The relative importance of diattenuation versus birefringence to angular displacement of Stokes vectors on a Poincaré sphere was quantified.  相似文献   

13.
Polarization controller using nematic liquid crystals   总被引:2,自引:0,他引:2  
Zhuang Z  Suh SW  Patel JS 《Optics letters》1999,24(10):694-696
In this Letter we demonstrate a polarization controller capable of changing any state of polarization of light from one arbitrary state to another. The controller consists of a stack of three homogeneous nematic liquid-crystal cells. The polarization state is controlled by proper adjustment of the voltages applied across each of the cells. The mathematical algorithm and principles of this polarization controller are developed in the framework of the Stokes parameters, allowing easy visualization by use of a Poincaré sphere representation. The transformation functions are given for conversion of an arbitrary input state to any output state. Experiments are carried out to demonstrate arbitrary polarization transformation.  相似文献   

14.
In this paper we apply an entropy analysis to measured scattering matrices from the Amsterdam light scattering database. We select examples of mineral aerosols from the database and use them to demonstrate differences in polarization behavior between the particle clouds using a new coherency matrix formulation. These differences are further investigated by analyzing the polarized component of the matrices via two new eigenvector parameters, which can be mapped conveniently onto the surface of a sphere, analogous to the Poincaré sphere used for wave states. We conclude by considering the potential for discriminating different aerosols on the basis of their entropy/eigenvector signatures by solving the contrast optimization problem for clouds with different scattering matrices by using a novel generalized coherency eigenvalue formulation.  相似文献   

15.
The works devoted to studying the polarization properties of a two-photon light generated upon spontaneous parametric down-conversion in the collinear frequency-degenerate regime are briefly overviewed, with emphasis on the studies carried out by us over a period from 1999 to 2001 within the framework of the project “Polarization Optics of Biphotons” of the Russian Foundation for Basic Research. In particular, the polarization state of a two-photon light was analyzed and its pictorial mapping onto the Poincaré sphere was proposed. The experiments on polarization transformations of a two-photon light were performed; based on these transformations, a method was suggested for ternary quantum information coding. A two-photon state with the orthogonal photon polarizations was synthesized experimentally from the two beams of identically polarized correlated photons, and the spectral properties of this state were investigated. Finally, a method was suggested for measuring the polarization state of a two-photon light in the collinear frequency-degenerate case (“tomography”).  相似文献   

16.
Henri Poincaré (1854–1912) developed a relativistic physics by elevating the empirical inability to detect absolute motion, or motion relative to the ether, to the principle of relativity, and its mathematics ensured that it would be compatible with that principle. Although Poincaré’s aim and theory were similar to those of Albert Einstein (1879–1955) in creating his special theory of relativity, Poincaré’s relativistic physics should not be seen as an attempt to achieve Einstein’s theory but as an independent endeavor. Poincaré was led to advance the principle of relativity as a consequence of his reflections on late nineteenth-century electrodynamics; of his conviction that physics should be formulated as a physics of principles; of his conventionalistic arguments on the nature of time and its measurement; and of his knowledge of the experimental failure to detect absolute motion. The nonrelativistic theory of electrodynamics of Hendrik A.Lorentz (1853–1928) of 1904 provided the means for Poincaré to elaborate a relativistic physics that embraced all known physical forces, including that of gravitation. Poincaré did not assume any dynamical explanation of the Lorentz transformation, which followed from the principle of relativity, and he did not seek to dismiss classical concepts, such as that of the ether, in his new relativistic physics. Shaul Katzir teaches in the Graduate Program in History and Philosophy of Science, Bar Ilan University.  相似文献   

17.
18.
《Physics Reports》1997,281(1):1-64
The phase shifts experienced by a polarized light wave when it propagates through media with arbitrary birefringence, dichroism and depolarizing properties, while on the one hand provide the basis for a variety of optical devices and experiments, on the other provide a powerful means of understanding unitary evolution, nonunitary evolution and decoherence of two-state quantum systems by virtue of a mathematical isomorphism of the two systems. These also help understand aspects of evolution of classical systems under the group of rotations in three-dimensional space, namely the SO(3) group, by virtue of its homomorphism with the group SU(2) governing unitary evolution of polarized light waves. In this review we present a survey and analysis of recent work on topological phases with polarization of light which has revealed several counterintuitive features of such phase shifts such as 2 anholonomies, nonlinear and discontinuous behaviour originating hi singularities, peculiar spectral dependence, etc. We point out several areas where these results may find practical application, for example endless phase correction in interferometric sensors, fast switching spatial light modulators, phase shifters with unusual chromatic properties, phasing of antenna arrays, etc. Several useful theoretical insights relevant to polarization optics, quantum mechanics, classical mechanics and other areas of physics, obtained from the work on polarization states are described and some directions for future work are indicated.  相似文献   

19.
《Physica A》1988,147(3):439-460
Poincaré's celebrated theorem on the nonexistence of analytical invariants of motion is extended to the case of a continuous spectrum to deal with large classical and quantum systems. It is shown that Poincaré's theorem applies to situations where there exist continuous sets of resonances. This condition is equivalent to the nonvanishing of the asymptotic collision operator as defined in modern kinetic theory. Typical examples are systems presenting relaxation processes or exhibiting unstable quantum levels. As the result of Poincaré's theorem, the unitary transformation, leading to a cyclic Hamiltonian in classical mechanics or to the diagonalization of the Hamiltonian operator in quantum mechanics, diverges. We obtain therefore a dynamical classification of large classical or quantum systems. This is of special interest for quantum systems as, historically, quantum mechanics has been formulated following closely the patterns of classical integrable systems. The well known results of Friedrichs concerning the coupling of discrete states with a continuum are recovered. However, the role of the collision operator suggests new ways of eliminating the divergence in the unitary transformation theory.  相似文献   

20.
Sagnac fiber optic current sensor (S-FOCS) is a kind of optical interferometer based on Sagnac structure, optical polarization states of sensing light wave in Sagnac fiber optic current sensor are limited. However, several factors induce optical polarization error, and non-ideal polarized light waves cause the interference signal crosstalk in sensor, including polarizer, quarter-wave retarder, splice angular, birefringence and so on. With these errors, linearly polarized light wave in PM fiber and circularly polarized light wave in sensing fiber become elliptically polarized light wave, then, nonreciprocal phase shift induced by magnetic field of the current is interrupted by wrong polarization state. To clarify characteristics of optical polarization error in fiber optic current sensor, we analyze the evolution process of random optical polarization state, linear optical polarization state and circular optical polarization state in Sagnac fiber optic current sensor by using Poincare sphere, then, build optical polarization error models by using Jones matrix. Based on models of polarization state in Sagnac fiber optic current sensor, we investigate the influence of several main error factors on optical polarization error characteristics theoretically, including extinction ratio in polarizer, phase delay in quarter-wave retarder, splice angular between quarter-wave retarder and polarization maintaining fiber. Finally, we simulate and quantify nonreciprocal phase shift to be detected in fiber optic current sensor related with optical polarization errors. In the end, we demonstrate S-FOCS in test. The results show that transfer matrix errors are induced by inaccurate polarization properties during polarization state conversion, then, the stability and accuracy of the S-FOCS are affected, and it is important to control the polarization properties at each step of the polarization state conversion precisely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号