首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
采用线性扫描伏安法研究了Lewis 酸性AlCl3-BMIC (BMIC: 1-butyl-3-methylimidazolium chloride)离子液体中铝电极的溶解. 铝电极在阳极极化时出现了钝化现象, 钝化是由于在铝电极表面形成了固体AlCl3钝化膜造成的. 铝的电化学溶解过程可以依次分为三个区: 电化学控制区、过渡区和钝化区. 在电化学控制区, 铝的电化学溶解速率随着电位的正移而逐渐增加; 在过渡区, 由于电极表面AlCl4-和Al2Cl7-浓度发生改变而析出固体AlCl3使得铝电化学溶解速率随着电位的正移而逐渐减小; 当钝化膜形成之后, 铝的电化学溶解速率不再随着电位的正移而发生改变, 铝溶解进入钝化区. 增加搅拌、升高温度、降低离子液体AlCl3摩尔分数都可以增加铝溶解阳极极限电流密度.  相似文献   

2.
任鹏英  何积铨 《电化学》2007,13(4):398-402
应用恒电位法测定锌合金阳极在不同pH值的Ca(OH)2溶液中的极化曲线,X-射线衍射分析了该锌合金阳极的腐蚀产物.实验表明:在不同pH值的碱性溶液中锌合金阳极表现出完全不同的电化学行为:在不稳定钝化区内出现了3个零电流电位;根据锌合金阳极在Ca(OH)2溶液中极化曲线测定了活化区内各不同pH值下的零电流电位、腐蚀电流密度,以及钝化区间内的维钝电流密度、钝化膜破裂电位等电化学参数;绘制电位-pH图,并与纯锌-水系的电位-pH图进行比较.  相似文献   

3.
Zn在KOH水溶液中的阳极溶解和钝化机理   总被引:2,自引:0,他引:2  
本文用旋转圆盘电极、稳态极化曲线、交流阻抗及恒电流充电曲线等方法研究了Zn在常温(30℃)和低温(-20℃)的KOH水溶液中阳极溶解和钝化过程的规律。从而提出其反应机理,并用最优化程序在TRS-80微型计算机上计算了反应机理中基元反应的速度和动力学参数的最佳值。由动力学参数计算的φ~i关系定量地符合从阳极溶解至钝化前整条极化曲线实验数据。旋转圆盘电极的转速效应、交流阻抗值以及恒电流充电电量值也都与提出的反应机理相符合。  相似文献   

4.
罗检  王毅  蒋继波  钟庆东  朱振宇  张磊 《化学学报》2012,70(10):1213-1220
利用交流阻抗谱和极化曲线研究比较了四组不同晶粒尺寸的螺纹钢在模拟海水液(3.5% NaCl)中短期电化学腐蚀行为; 利用硼酸缓冲液中钝化膜的Mott-Schottky 理论比较了各试样在不同阳极极化电位下的钝化膜的优劣性. 结果表明, 在14 d 的模拟海水短期浸泡期间, 细晶粒螺纹钢在后期表现出较大阻抗值和较小的自腐蚀电流密度, 耐蚀性能优于粗晶粒试样. 在硼酸缓冲液中形成的钝化膜表现出典型的n 型半导体性能, 公共钝化区间为-0.15~0.8 V. 在选取的-0.1, 0.2, 0.5 V 三个不同极化电位下, 细晶粒螺纹钢在硼酸缓冲液中的钝化膜稳定性、耐蚀性弱于粗晶粒螺纹钢. 在0.5 V 的外加电压下试样钝化膜的内层膜消失, 钝化膜的施主浓度最低, 膜最为致密、稳定.  相似文献   

5.
碳钢在NaHCO_3溶液中的阳极极化行为(英文)   总被引:2,自引:0,他引:2  
赵景茂  左禹 《电化学》2005,11(1):27-31
研究碳钢在NaHCO3溶液中的阳极极化行为. 极化曲线测试表明,在 (0. 05 ~1. 0mol/L)NaHCO3浓度范围内,碳钢的阳极极化曲线都显示 2个电流峰和 2个钝化区,当HCO3-浓度低于 0. 1mol/L时,两电流峰相距很近,致使第 1个钝化区不易观察到. 而当HCO3-浓度>0. 1mol/L后,其第 1电流峰峰电流愈加上扬,而第 2电流峰峰电流反而下降. XPS分析表明,在较高电位下碳钢形成的表面膜,其外层主要成分为Fe2O3,而内层组成主要含Fe(Ⅱ)和Fe(Ⅲ)氧化物.  相似文献   

6.
采用浸泡实验, 电化学测试和表面分析技术研究了硫酸根离子浓度对铁在稀碳酸氢钠溶液中开路状态和阳极极化行为的影响. 在无硫酸根离子及含有少量硫酸根离子的碳酸氢钠溶液中, 铁的开路电位约为(-0.225±0.005) V, 并呈现钝化状态, 其电化学阻抗很大, 腐蚀速率较低. 在含有较高浓度硫酸根离子的碳酸氢钠溶液中, 铁的开路电位为(-0.790±0.010) V并呈现活性溶解状态, 其电化学阻抗较小, 腐蚀速率较高, 同时阳极极化曲线上能观察到活化-钝化转变现象. 由于铁在含有较高浓度硫酸根离子的碳酸氢钠溶液中处于活化状态, 阳极极化曲线上存在数个电流峰. 足够高的硫酸根离子浓度会导致铁表面预先形成或转变而成的氧化膜失效. 相比于自然曝氧状态, 在除氧条件下较低的硫酸根离子浓度即可引起铁在碳酸氢钠溶液中由钝态向活性溶解态的转变.  相似文献   

7.
梁成浩  隋洪艳 《电化学》2001,7(2):210-214
在Hank’s人工模拟体液中对TiNiCu形状记忆合金的电化学行为进行了研究 .结果表明 ,TiNiCu合金阳极极化时 ,于酸性条件下合金的钝化区较窄、在 10 0~ 150mV电位区间出现了阳极活性溶解 ,钝化膜受到破坏 .pH的降低和Cl- 浓度的升高 ,使孔蚀电位负移 .在Hank’s人工模拟体液中TiNiCu合金的电化学性能比TiNi形状记忆合金劣 ,其原因是TiNiCu合金的晶体结构不单一 ,造成电化学性质不均一 ,构成腐蚀原电池 ,加之晶界析出富Ti的Ti2 Ni析出物成为孔蚀诱发的敏感位置  相似文献   

8.
吕战鹏  黄德伦  杨武 《电化学》2001,7(3):326-331
采用电化学方法以及扫描电镜形貌观察研究了磁场对铁在硫酸溶液中的阳极溶解的影响 .恒电位极化测试结果表明 ,随外加阳极电位的增加 ,磁场的存在将加速阳极溶解 ,使振荡态或钝态变为活性溶解态 ,维持钝态 .于特定电位下与重力方向平行的电极表面两侧将因局部溶解加速而出现凹陷 .由于电极周边浓度梯度场的特殊性以及磁场的作用方向导致了铁的不均匀阳极溶解  相似文献   

9.
锌铋合金电极在溶胶电解液中的电化学行为   总被引:1,自引:0,他引:1  
锌电极的自腐蚀速率, 持续放电下的阳极溶解速率和电极钝化的难易程度是碱性电池性能的重要电化学参数. 本文应用线性极化、恒流放电等电化学实验方法研究了电解液中添加Carbopol树脂以及电极中添加Bi对锌电极电化学行为的影响. 并应用金相显微镜和环境扫描电子显微镜(ESEM)对锌电极和锌铋合金电极浸蚀及放电后的形貌进行了表征. 结果表明: 电解液中添加适量的Carbopol树脂可明显提高电极的极化电阻, 显著降低电极的自腐蚀速率; 阳极的溶解电位出现不同程度的正移, 阳极过电位显著增大且大电流密度放电时较明显促进电极钝化. 锌电极中添加一定量的Bi对改善电极表面氧化物膜的沉积形貌和电极表面固液界面的传质条件, 减小电极的自腐蚀速率, 抑制电极自腐蚀等方面具有显著作用.  相似文献   

10.
混合控制下腐蚀过程的电化学动力学参数测定   总被引:1,自引:0,他引:1  
赵永韬  郭兴蓬 《物理化学学报》2006,22(10):1281-1286
通过恒电量脉冲技术测定Q235碳钢在天然海水中腐蚀过程的电化学动力学参数. 分别利用不同极化幅度的恒电量瞬态响应分析获得极化电阻和Tafel斜率, 进而计算腐蚀电流icorr. 并对比了恒电量方法和考虑扩散影响的稳态极化曲线方法的测量结果. 结果表明, 采用恒电量强极化积分算法(CPSI)获得的Tafel斜率与极化曲线方法有很好的相关性. 同时, CPSI测定的阴极Tafel斜率符合氧还原反应的理论Tafel斜率值. 因此, 采用恒电量瞬态响应测量大大减小了浓差极化的影响, 有利于快速测定电荷传递和扩散传质混合控制下腐蚀过程的电化学动力学参数.  相似文献   

11.
Anomalous codeposition of Co and Ni onto a gold RDE was investigated in a solution containing simple sulfate salts with the addition of sodium citrate. It was shown that the dependence of the percentage of Co in the deposit on the percentage of Co in the bath follows the shape found in the literature, with the percentage of Co in the deposit being slightly higher than in electrolytes containing pure simple salts. Alloy layers of different composition, electrodeposited at constant charge Qdep = 1 C cm−2 (thickness 0.34 μm) were submitted to anodic dissolution at a sweep rate of 1 mV s−1 (ALSV technique) in a solution of 1 M NaCl, pH 2. All samples were found to dissolve through a single anodic peak, indicating that both constituents of the alloy dissolve simultaneously. Alloys with higher Ni content (above 40at.%) were found to dissolve at potentials more positive than the potential of pure Ni dissolution as a consequence of the Gibbs energy change of formation of electrodeposited solid solution type Co + Ni alloys. The composition of electrodeposited alloys was determined by the atomic absorption technique. An attempt was made to obtain a correlation between the peak potentials of anodic dissolution of alloy samples and the composition of alloys, to determine the composition of the alloy from the peak potential of its dissolution. It is found that such a correlation can be used only for strictly defined conditions of alloy deposition and dissolution, caused by the contribution of the Gibbs energy change of formation of electrodeposited alloys. Also, the presence of a CoNi3 ordered structure in the system is not detected as a separate ALSV peak, but its existence could be the cause of the shape of the Gibbs energy change with composition of the alloy for alloys electrodeposited at low current density.  相似文献   

12.
Experimental redox potentials of the couples [Cu(R-L ( n ))(CH 3CN)] (2+,+), where L (1) is bis-(pyridine-2-ylmethyl)-benzylamine, L (2) is (pyridine-2-ylethyl)(pyridine-2-ylmethyl)-benzylamine, and R is H, Me, or CF 3, were determined in dichloromethane solution. The compounds exhibited one simple quasi-reversible wave over the measured potential range of -500 to +1200 mV, and the E 1/2 values varied from +200 to +850 mV versus SCE. These experimental values were correlated with redox potentials calculated using density functional theory. The optimized geometries and the predicted redox potentials were obtained using the BP86 functional and a combination of the basis sets LACV3P** (for Cu) and cc-pVTZ(-f) (for light atoms). A distortion analysis of all of the optimized geometries for both oxidation states was performed using the generalized interconversion coordinate phi. A linear relation was obtained between this parameter and the redox potentials. However, the [Cu(CF 3-L (1))(CH 3CN)] (+) complex showed the largest deviation, which was explained by the more-rigid structure of the ligand.  相似文献   

13.
In situ sum frequency generation vibrational spectroscopy, at varied potentials and polarization combinations, was performed on polycrystalline copper, polycrystalline platinum, and polycrystalline gold samples in 0.5 M HClO4 with 50 mM 5-methylbenzotriazole (5-methylBTAH) added. These studies were performed to determine the orientation of 5-methylBTAH on the surface at different potentials. For copper surfaces, orientation of the molecule on the surface is not affected by potential within the potential window studied (-500 to -100 mV vs saturated calomel electrode (SCE)). Sum frequency generation spectra of 5-methylBTAH on platinum show a change in orientation over the potential range studied (-250 to 750 mV vs SCE). The orientation of the methyl group tilts more toward the plane of the interface as the potential is scanned in the positive direction. This orientation change is correlated to hydrogen coadsorption on the platinum surface at low potentials. 5-Methylbenzotriazole lies in the surface plane or does not orient on gold at lower potentials but the orientation is tilted toward normal at more positive potentials over the potential range studied (-500 to 900 mV vs SCE). To compliment these results, cyclic voltammetry and electrochemical impedance spectroscopy measurements were performed. Cyclic voltammograms of copper show that addition of 5-methylBTAH protects the surface from copper dissolution, increasing the electrochemical window by 450 mV. Cyclic voltammetry of 5-methylBTAH on platinum showed a partial blockage of adsorbed hydrogen and also prevented the adsorption of oxygenated species at 450-600 mV. Cyclic voltammetry on gold shows that 5-methylBTAH blocks oxide formation for 400 mV thus increasing the electrochemical window. Electrochemical impedance spectroscopy has been performed to determine the potential of zero charge of 5-methylBTAH on copper.  相似文献   

14.
《Electroanalysis》2004,16(3):238-241
A reference saturated calomel electrode based on the non‐toxic silver solid amalgam (SCE‐AgSA) as a substitute for liquid mercury is described. Long‐term as well as short‐term tests made during a period of one year confirmed the SCE‐AgSA potential to be equal to that of SCE within the limits of ±1 mV (the difference ΔESCE‐AgSA=+1.08±0.24 mV (vs. SCE); SD=0.87; N=51). The voltammograms of four selected metal ions registered vs. SCE‐AgSA and vs. SCE could practically overlap each other. None of the mentioned electrodes were polarized to a significant degree even if the electric current applied reached 2 mA. On the basis of the obtained results the SCE‐AgSA could be considered as equivalent substitute for SCE. Owing to practically identical electrode potential of both types of the mentioned electrodes the results obtained using SCE‐AgSA are completely comparable to those measured vs. SCE, without any correction of peak potentials.  相似文献   

15.
Thermodynamics drive the spontaneous dissolution of a graphite intercalation compound (GIC) KC(8) in NMP to form stable solutions. Reduction potential of graphene is measured at +22 mV vs. SCE. Single layer graphene flakes (ca. 1 μm(2)) have been unambiguously identified by electron diffraction.  相似文献   

16.
Anodic potentiodynamic and chronoamperometric curves on nickel-chromium alloys (2–50 wt % Cr) are obtained in NaCl solutions at various concentration, pH, and temperature. The dependences of pitting and repassivation potentials on the concentration and temperature are determined for alloy with 20 wt % Cr. The effect of the Cr content and pH on the anodic behavior of the alloys, in particular, the transition from a pitting breakdown of passivity to transpassivation, is shown. Quantitative time dependences of the current in the passive range are obtained and the steady-state values of this current are determined. The corrosion potential of the alloy with 20 wt % Cr is measured. Cathodic voltamograms for passive and chloride-ion-activated surface of the alloy are obtained.  相似文献   

17.
In this paper, we described a glucose biosensor based on the co-electrodeposition of a poly(vinylimidazole) complex of [Os(bpy)2Cl](+/2+) (PVI-Os) and glucose oxidase (GOX) on a gold electrode surface. The one-step co-electrodeposition method provided a better control on the sensor construction, especially when it was applied to microsensor construction. The modified electrode exhibited the classical features of a kinetically fast redox couple bound to an electrode surface and the redox potential of the redox polymer/enzyme film was 0.14 V (vs. SCE). For a scan rate of up to 200 mV s(-1), the peak-to-peak potential separation was less than 25 mV. In the presence of glucose, a typical catalytic oxidation current was observed, which reached a plateau at 0.25 V (vs. SCE). Under the optimal experimental conditions, the steady-state electrooxidation current measured at 0.30 V (vs. SCE) was linear to the glucose concentration in the range of 0-30 mM. Successful attempts were made in blood sample analysis.  相似文献   

18.
A method of multicycle chronoamperometry at rotating ring-disc electrode is suggested for experimental separation of the disc polarization current into its components that correspond to the substrate metal ionization, an oxide formation, and the oxide chemical dissolution. The method was validated by the example of the Ag|Ag2O|OH?(H2O) system. At moderate anodic potentials of Ag-disc (0.48–0.51 V), silver active dissolution from open areas of its surface and through film’s pores dominates; the phase-forming current, hence, the current efficiency of this process drops down rapidly. At the potentials of the maximum at voltammograms (0.52–0.53 V), when the silver active dissolution current is suppressed, the phase-forming currents dominate; they exceed the oxide chemical dissolution rate significantly. The Ag2O film thickness increases rapidly, the current efficiency of the oxide formation process approaches 100% during the entire disc polarization period. The Ag(I)-oxide chemical dissolution rate constant practically does not depend on the anodic phase-formation potential; however, it somewhat varies depending on the oxide film thickness, thus reflecting changes in the film structure and, possibly, chemical composition (from AgOH to Ag2O).  相似文献   

19.
The focus of the investigations presented is to evaluate local alterations caused by chloride ions affecting thin, magnetron-sputtered CrN layers. Scanning-probe microscopy and analysis techniques are used for this estimation. Thin CrN layers were deposited by reactive magnetron sputtering. They were investigated in electrochemical scanning tunnelling microscopy (EC STM) by cyclic voltammetry in 1 mol L(-1) NaCl. Simultaneously, the surface topography changes were recorded with STM.Above 100 mV the anodic oxidation leads to formation of chromium(III) hydroxide and at sample potentials above 350 mV oxidation of Cr(OH)(2) and Cr(OH)(3) towards chromium(VI) as a soluble chromate starts. Transpassive dissolution of the coating takes place above 900 mV. Yellow colour of the electrolyte is a visible sign for the formation of chromium(VI). Changes of the surface topography indicate the formation of surface layers at anodic potentials. At cathodic potentials increase in current is measured due to the reduction of chromium(III) hydroxide to divalent chromium and metallic chromium. Roughness of surface topography increases.Follow-up explorations with scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic-force microscopy (AFM), scanning tunnelling microscopy/scanning tunnelling spectroscopy (STM/STS) and X-ray photoelectron spectroscopy (XPS) not only evidence the formation of various chromium oxides, but also indicate the existence of chromium hydroxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号