首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we wish to demonstrate to what extent the numerical method regularized smoothed particle hydrodynamics (RSPH) is capable of modelling shocks and shock reflection patterns in a satisfactory manner. The use of SPH based methods to model shock wave problems has been relatively sparse, both due to historical reasons, as the method was originally developed for studies of astrophysical gas dynamics, but also due to the fact that boundary treatment in Lagrangian methods may be a difficult task. The boundary conditions have therefore been given special attention in this paper. Results presented for one quasi-stationary and three non-stationary flow tests reveal a high degree of similarity, when compared to published numerical and experimental data. The difference is found to be below 5, in the case where experimental data was found tabulated. The transition from regular reflection (RR) to Mach reflection (MR) and the opposite transition from MR to RR are studied. The results are found to be in close agreement with the results obtained from various empirical and semi-empirical formulas published in the literature. A convergence test shows a convergence rate slightly steeper than linear, comparable to what is found for other numerical methods when shocks are involved.  相似文献   

2.
This paper is the part 2 of our previous thin film heat transfer measurements. In the first report we measured time variations of heat flux over a cylinder placed in a shock tube flow and compared experimental results with CFD results, Saito et al. (Shock Waves 14:327–333, 2004). We report a result of heat transfer measurements over an 86° apex angle cone surface impinged by a Ms = 2.38 shock wave in air with distributed thin film transfer gauges along cone surface and its comparison with results of numerical simulations. We performed double exposure holographic interferometric observation, and also from the heat transfer measurement and numerical simulation, confirmed the presence of delayed transition from regular to Mach reflection over the cone. The numerical estimation of delayed transition distance from the apex agreed very well with experimental one.   相似文献   

3.
An experiment on imploding conical shock waves   总被引:3,自引:0,他引:3  
Over the past decade and a half there have been a number of numerical studies of the reflection of oblique axisymmetric shock waves from the axis of symmetry. Many of these have shown a complex Mach reflection pattern together with a strong toroidal vortex which significantly distorts the Mach disk. This geometry has never been captured experimentally. This note describes a special rig for the generation of strong imploding conical shocks, and presents photographs of the predicted reflection pattern. Received 4 October 2001 / Accepted 13 November 2001  相似文献   

4.
环形激波绕射, 反射和聚焦的数值模拟研究   总被引:9,自引:0,他引:9  
应用频散可控耗散格式对环形激波在圆柱形激波管内绕射、反射和聚焦的问题进行了数值模拟研究,研究结果表明环形激波形成强烈聚焦的关键因素是环形激波在圆柱形管道中向对称轴运动时,绕射激波就不断加速而不作通常情况下的衰减;不同马赫数的环形激波绕射也产生不同马赫数及形状的准柱形激波,导致聚焦效果和位置的差异;另外,环形激波聚焦于一个点而圆柱形激波聚焦于一条线,两者有本质不同。  相似文献   

5.
This paper investigates the flow field near three intersecting shock waves appearing in steady Mach reflection. Results of numerical computations reveal a “von Neumann Paradox”—like feature for weak shock waves, in which the flow field between the reflected and the Mach stem is smooth with no distinct slip flow region and changes rather smoothly. An analytical solution of the Navier–Stokes equations constructed using a polar–coordinate system gives a flow field with the same properties as the numerical simulation.  相似文献   

6.
H. Barik  A. Chatterjee 《Shock Waves》2007,16(4-5):309-320
The length scale criteria is widely accepted as an explanation for transition and hence existence of different shock wave reflection configurations in pseudo-steady flows. However, there has not been any attempt to validate this criteria using information obtained from a time-dependent numerical simulation. A high resolution time-dependent numerical simulation in pseudo-steady flow is carried out in the present work. Time-dependent numerical data is used to calculate flow features in a laboratory frame of reference to verify validity of the length scale criteria for existence of different shock wave reflection configurations in pseudo-steady flow. This analysis is then extended to the study of unsteady shock wave reflection configurations in shock–vortex interactions. It is shown that the existence of regular reflection (RR) and Mach reflection (MR) configurations in an unsteady flowfield resulting from shock–vortex interactions can also be explained locally based on limiting conditions similar to that prescribed by the length scale criteria for pseudo-steady flow.
  相似文献   

7.
An experimental investigation was carried out to explore the possibility of producing converging polygonal shocks in an essentially two-dimensional cavity. Previous calculations by Apazidis and Lesser (1996) suggested that such configurations could be produced by reflecting a cylindrical outgoing shock from a smoothly altered circular boundary, the alteration having n-gonal symmetry. In the experiments the outgoing shock was produced by a spark discharge which yielded shocks in the Mach number range from 1.1 to 1.7 at a radius just prior to the reflection. Polygonal shocks were observed as predicted by using a modified form of geometrical shock dynamics, derived in the above paper. In addition, the modified theory was used to calculate the results of an experiment carried out by Sturtevant and Kulkarny (1976). The results of the numerical calculations were found to be in substantial agreement with both experiments, suggesting that the modifications in geometrical shock dynamics for non-uniform flow ahead of an advancing shock are useful in the case of shock focusing. The experiment also showed that the polygonal shapes were stable in the examined range of shock Mach numbers, a result that may be of importance for a number of practical situations in which shock focusing is present. Received 9 October 2001 / Accepted 7 January 2002 – Published online 11 June 2002  相似文献   

8.
When a weak shock wave reflects from wedges its reflection pattern does not appear to be a simple Mach reflection. This reflection pattern is known to be von Neumann Mach reflection in which a Mach stem can not necessarily be straight. In this paper the local change of the Mach stem curvature was experimentally and numerically investigated. A distinct triple point, at which the curvature becomes infinite as appears in a simple Mach reflection, was not observed but the Mach stem curvature became a maximum between foot of the Mach stem and a point, P1, at which an incident shock met with a reflected shock. Maximum curvature point P2 and P1 do not coincide for small wedge angles and tend to merge over a certain wedge angle. Experimental results agreed with numerical results. The trajectory angle of P2 was found to be expressed well by Whitham's shock-shock angle.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

9.
Shock wave reflection over a rotating circular cylinder is numerically and experimentally investigated. It is shown that the transition from the regular reflection to the Mach reflection is promoted on the cylinder surface which rotates in the same direction of the incident shock motion, whereas it is retarded on the surface that rotates to the reverse direction. Numerical calculations solving the Navier-Stokes equations using extremely fine grids also reveal that the reflected shock transition from RR MR is either advanced or retarded depending on whether or not the surface motion favors the incident shock wave. The interpretation of viscous effects on the reflected shock transition is given by the dimensional analysis and from the viewpoint of signal propagation.Received: 24 April 2002, Accepted: 16 August 2002, Published online: 25 March 2003  相似文献   

10.
The transition from regular reflection (RR) to Mach reflection (MR) as a plane shock wave diffracts around a triangular mountain of 45° inclination is analysed in this paper, both by optical measurement in a shock tube and by numerical simulation the numerical method developed by Li Yingfan[1] is of the FLIC type with triangular mesh. The dependence of the critical transition point Lk ofRR→MR on shock Mach numberM i is analyzed and the variations of the incidence angle ω i of the impinging shock and the reflection angle ω r with the distanceL * are investigated. Our experimental and numerical results agree well with the theoretical results of Iton and Italya.  相似文献   

11.
D. Q. Xu  H. Honma 《Shock Waves》1991,1(1):43-49
A numerical simulation was performed for the process of formation of single Mach reflection on a wedge by solving a BGK type kinetic equation for the reduced distribution function with a finite difference scheme. The calculations were carried out for a shock Mach number 2.75 and wedge angle 25° in a monatomic gas, which corresponds to the conditions of single Mach reflection in the classical von Neumann theory. The calculations were performed for both diffuse and specular reflection of molecules at the wall surface. It is concluded that the diffuse reflection of molecules at the wall surface or the existence of the viscous or thermal layer is an essential factor for a nonstationary process at the initial stage of Mach reflection. Furthermore, the numerical results for diffuse reflection are found to simulate the experimental results very well, such as a transient process from regular reflection to Mach reflection along with shock propagation.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

12.
G. Ben-Dor 《Shock Waves》2006,15(3-4):277-294
The distinguished philosopher Ernst Mach published the first known paper on the phenomenon of planar shock-wave reflections over straight wedges over 125 years ago in 1878. In his publication he presented two wave configurations that could result from this reflection process, a regular reflection (RR) and a configuration that was later named after him and called Mach reflection (MR) in the early 1940s. In 1945, Smith reported on an additional wave configuration, which had a reflected shock wave that was slightly different from that of the just-mentioned Mach reflection. Smith (OSRD Rep. 6271, Off. Sci. Res. Dev., 1945) did not ascribe any special importance to the wave configuration that he observed. The wave configuration that was observed and reported by Smith (OSRD Rep. 6271, Off. Sci. Res. Dev., 1945) was recognized as an independent one only about 5 years later when White (Tech. Rep. II-10, Princeton Univ. Dept. Phys., 1951) reported on the discovery of a new wave configuration that was named double-Mach reflections (DMR) because it had similar features to that of the Mach reflection wave configuration but all the features were doubled. For this reason the Mach reflection wave configuration has been re-named single-Mach reflection (SMR). (Until the late 1970s it was called simple-Mach reflection although nothing is simple about it.). The discovery of the double-Mach reflection revealed that the wave configuration that was first observed by Smith was an intermediate wave configuration between the SMR and the DMR wave configurations. For this reason it was named transitional-Mach reflection (TMR) (Until the early 1980s it was called complex-Mach reflection although it is not the most complex one.). Since the discovery of the DMR many investigations were aimed at elucidating the exact transition criteria between the above-mentioned four different wave configurations as well as some additional configurations and sub-configurations that were discovered later. In 1991 Ben-Dor published a monograph, entitled “Shock Wave Reflection Phenomena”, that was, in fact, a state-of-the-knowledge review of the phenomena. This state-of-the-knowledge will be referred to in the followings as the “old”-state-of-the-knowledge (This state-of-the-knowledge existed until the mid 1990s. A few years later Li and Ben-Dor (Shock Wave 5(1/2), 59–73, 1995) modified the analytical approach for evaluating the transition criteria from the single-Mach to the transitional- Mach reflection (SMR, ,TMR) and from the transitional-Mach to the double-Mach reflection (TMR, ,DMR) and presented some modified and new criteria for the formation and termination of both the TMR and DMR wave configurations. Experimental results from various sources revealed that the transition boundaries between the SMR, TMR and DMR wave configurations that were based on the modified analytical approach were better than those of the “old” state-of-the-knowledge that as mentioned earlier was summarized in Ben-Dor’s (Shock Wave Reflection Phenomena, Springer, 1991) monograph. Unfortunately, however, the results of Li and Ben-Dor’s (Shock Wave 5(1/2), 59–73, 1995) modified analytical approach have not been internalized, and publications by various scientists in the past decade neglected the revised and better transition criteria and kept on referring to the old and wrong criteria that appeared in Ben-Dor’s (Shock Wave Reflection Phenomena, Springer, 1991) monograph. For this reason, a state-of-the-knowledge review that is based on the above-mentioned 10-year-old findings of Li and Ben-Dor (Shock Wave 5(1/2), 59–73, 1995) is presented herein. At the first step, the “old” state-of-the-knowledge is presented.This paper was based on work that was presented at the 2nd International Symposium on Interdisciplinary Shock Wave Research, Sendai, Japan, 1–3 March 2005.  相似文献   

13.
The various oblique shock wave reflection patterns generated by a moving incident shock on a planar wedge using an ideal quantum gas model are numerically studied using a novel high resolution quantum kinetic flux splitting scheme. With different incident shock Mach numbers and wedge angles as flow parameters, four different types of reflection patterns, namely, the regular reflection, simple Mach reflection, complex Mach reflection and the double Mach reflection as in the classical gas can be classified and observed. Both Bose–Einstein and Fermi–Dirac gases are considered.   相似文献   

14.
Lighthill (Proc. R. Soc. A 198, 454–470, 1949) considered the diffraction of a normal shock wave passing over a small bend. The bend being small Lighthill was able to linearize the flow equations and solved the problem through several mathematical techniques. Following Lighthill (Proc. R. Soc. A 198, 454–470, 1949), Srivastava and Chopra (J. Fluid Mech. 40, 821–831, 1970) extended the work to the diffraction of oblique shock waves. Srivastava (AIAAJ 33, 2230–2231, 1995) considered the problem of starting point of curvature and extended the work to yawed wedges (Srivastava in Proceedings of the 14th International Mach reflection symposium Sun Marina Hotel, Yonezawa, Japan, 1–5 October 2000, pp. 225–249, 2002). Srivastava (Shock waves 13, 323–326, 2003) considered the problem for starting point of curvature when the relative outflow behind reflected shock before diffraction has been subsonic and sonic. The present work is an extension of the work published in Srivastava (Shock waves 13, 323–326, 2003) when the wedge has been yawed through an angle. The results have been obtained for two angles χ = 60° and χ = 40° (χ is the angle of yaw).   相似文献   

15.
An experimental and numerical study was made of converging cylindrical shock waves. The goal of the present study was to clarify the movement and instability of the converging cylindrical shock waves. Experiments were conducted in an annular shock tube of 230 mm o.d. and 210 mm i.d. connected to a cylindrical test section of 210 mm diameter. Double exposure holographic interferometry was used to visualize the converging cylindrical shock waves. Incident shock Mach numbers ranged between 1.1 and 2.0 in air. A numerical simulation was conducted using the TVD finite difference scheme. It was found in the experiments that although the initial shock wave configuration looked cylindrical, it was gradually deformed with propagation towards the center and finally showed mode-four instability. This is attributable to the existence of initial disturbances which were introduced by the struts which supported the inner tube of the annular shock tube. This trend was significant for stronger shock waves indicating that at the last stage of shock wave convergence the initial perturbations of the converging cylindrical shock wave were amplified to form the triple point of Mach reflection. The numerical results correctly predicted the experimental trend.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

16.
D. Igra  O. Igra 《Shock Waves》2008,18(1):77-78
It was recently demonstrated that shock wave enhancement could be achieved when a shock propagates in a constant cross-section duct through pairs of air–helium layers having a continually decreasing width (Igra and Igra in Shock Waves 16(3):199–207). A parametric study was conducted aimed at finding a two-layered, light–heavy gas arrangement that yields maximal shock enhancement; the heavy and the light gases used were air and helium, respectively. Effects associated with changes in following parameters were investigated: the number of alternating heavy/light gas layers, the applied reduction ratio between successive layers thickness, and the initial shock wave Mach number.   相似文献   

17.
G. Emanuel  H. Hekiri 《Shock Waves》2007,17(1-2):85-94
A theory is developed for the vorticity and its substantial derivative just downstream of a curved shock wave, the resulting formulas are exact, algebraic, and explicit. Analysis is for a cylinder-wedge or sphere-cone body, at zero incidence, whose downstream half-angle is θb. Derived formulas directly depend only on the ratio of specific heats, γ, the freestream Mach number, M 1, the local slope and curvature of the shock, and the dimensionality parameter, σ, which is zero for a two-dimensional shock and unity for an axisymmetric shock. In turn, the slope and curvature depend on γ, M 1, and θb. Numerical results are provided for a bow shock in which θb is 5°, 10°, or 15°, M 1 is 2, 4, or 6, and γ = 1.4. There is little dependence on the half angle but a strong dependence on the freestream Mach number and on dimensionality. For vorticity and its substantial derivative, the dimensionality dependence gradually decreases with increasing Mach number. In comparison to the two-dimensional case, an axisymmetric shock generates considerable vorticity in a region relatively close to the symmetry axis. Moreover, the magnitude of the vorticity, in this region, is further enhanced in the flow downstream of the shock. This dimensionality difference in vorticity and its substantial derivative is attributed to the three-dimensional relief effect in an axisymmetric flow.
  相似文献   

18.
The evolution of disturbances in a hypersonic viscous shock layer on a flat plate excited by slow-mode acoustic waves is considered numerically and experimentally. The parameters measured in the experiments performed with a free-stream Mach number M = 21 and Reynolds number Re L = 1.44 · 105 are the transverse profiles of the mean density and Mach number, the spectra of density fluctuations, and growth rates of natural disturbances. Direct numerical simulation of propagation of disturbances is performed by solving the Navier-Stokes equations with a high-order shock-capturing scheme. The numerical and experimental data characterizing the mean flow field, intensity of density fluctuations, and their growth rates are found to be in good agreement. Possible mechanisms of disturbance generation and evolution in the shock layer at hypersonic velocities are discussed. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 3–15, September–October, 2006.  相似文献   

19.
N. Apazidis 《Shock Waves》1994,3(3):201-212
Theoretical study of a weak shock wave focusing process on a spherical region in confined 3-D axisymmetric chambers is presented. The chambers are elliptic or parabolic in the plane cross-section containing their axis of symmetry. In the elliptic case a spherical shock wave of constant strength generated at one of the focal points will reflect off the chamber wall and converge on a spherical region around the second focus of the chamber. It is shown that the pressure distribution on the converging spherical shock wave is not homogeneous. In the parabolic case two possibilities of shock generation are considered. In the first one a plane shock wave of constant intensity is send in the inner of the chamber. This shock wave with the plane perpendicular to the symmetry axis will after the reflection off the chamber wall transform to a spherical shock with non-homogeneous pressure distribution. Alternatively, a spherical shock of constant intensity generated at the focus of the paraboloidal chamber will after the reflection transform to a plane shock with non-homogeneous pressure distribution propagating in the outer of the chamber. The above mentioned problems are solved within the frame of the geometrical acoustics approximation and the flow fields as well as the non-uniform shock strengths behind the converging wave fronts are calculated.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

20.
Theoretical study of a weak shock focusing process in a confined chamber filled with liquid is presented. The chamber has a form of a thin cylinder with a parabolic cross-section, planar bottom and an arbitrary, although slowly varying, upper bounding surface. Analytical, numerical and experimental studies of weak shock wave focusing have been previously performed in the elliptic and ellipsoidal cases with a shock wave generated at one of the foci by means of an electric discharge or a microexplosion. In the present case a planar shock, perpendicular to the axis of the parabolic cross-section, sent in the inner of the chamber will converge at the focus after the reflection off the chamber wall, thus offering a different technical realization of the shock generation. The problem is solved within the frame of the geometrical acoustics approximation and a relation between the form of the upper bounding surface of the chamber and the pressure distribution behind the converging wavefront is obtained. It is shown that a desired pressure distribution may be obtained by an appropriate choice of the upper bounding surface.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号