首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>The first-principles calculations are performed to investigate the adsorption of O2 molecules on an Sn(111) 2×2 surface.The chemisorbed adsorption precursor states for O2 are identified to be along the parallel and vertical channels, and the surface reconstructions of Sn(lll) induced by oxygen adsorption are studied.Based on this,the adsorption behaviours of O2 on X(111)(X=Si,Ge,Sn,Pb) surfaces are analysed,and the most stable adsorption channels of O2 on X(111)(X=Si,Ge,Sn,Pb) are identified.The surface reconstructions and electron distributions along the most stable adsorption channels are discussed and compared.The results show that the O2 adsorption ability declines gradually and the amount of charge transferred decreases with the enhancement of metallicity.  相似文献   

2.
《Current Applied Physics》2018,18(12):1528-1533
The trajectories of adsorption and dissociation process of O2 on the Al (111) surface were studied by the spin-polarized ab initio molecular dynamics method, and the adsorption activation energy was clarified by the NEB method with hybrid functionals. Three typical dissociation trajectories were found through simulation of O2 molecule at different initial positions. When vertically approaches to the Al surface, the O2 molecule tends to rotate, and the activation energy is 0.66eV. If O2 molecule does not rotate, the activation energy will increase to 1.43 eV, and it makes the O atom enter the Al sublayer eventually. When the O2 molecules parallel approach to the Al surface, there is no activation energy, due to the huge energy released during the adsorption process.  相似文献   

3.
杨宇 《中国物理 B》2010,19(10):603-609
Using first-principles calculations, we systematically study the influence of Pb adatom on the adsorption and the dissociation of oxygen molecules on Pb(111) surface, to explore the effect of a point defect on the oxidation of the Pb(111) surface. We find that when an oxygen molecule is adsorbed near an adatom on the Pb surface, the molecule will be dissociated without any obvious barriers, and the dissociated O atoms bond with both the adatom and the surface Pb atoms. The adsorption energy in this situation is much larger than that on a clean Pb surface. Besides, for an adsorbed oxygen molecule on a clean Pb surface, a diffusing Pb adatom can also change its adsorption state and enlarge the adsorption energy for O, but it does not make the oxygen molecule dissociated. And in this situation, there is a molecule-like PbO2 cluster formed on the Pb surface.  相似文献   

4.
We report on a two-step method for oxidation of Pb(111) surfaces, which consists of low temperature (90K) adsorption of 02 and subsequent annealing to room temperature. In situ scanning tunnelling microscopy observation reveals that oxidation of Pb(111) can occur effectively by this method, while direct room temperature adsorption results in no oxidation. Temperature-dependent adsorption behaviour suggests the existence of a precursor state for 02 adsorption on Pb(111) surfaces and can explain the oxidation-resistance of clean Pb(111) surface at room temperature.  相似文献   

5.
Boron-carbon thin films have been successfully deposited on Si (111) from the synchrotron radiation induced decomposition of the nido-2,3-diethyl-dicarbahexaborane, (CH3CH2)2C2B4H6. There are indications that molecular precursor states to complete dissociation exist, and that dissociation is the rate limiting step. As with deposition of boron from decaborane, there is an activation barrier to dissociation of diethylcarborane on Si (111). The composition of the growing film, as determined by the boron to carbon ratio, is strongly dependent upon the boron concentration at the surface of the substrate. The boron concentration of the film increases with increasing film thickness.Part one appeared in [1]  相似文献   

6.
The previously developed kinetic Monte Carlo model of molecular oxygen adsorption on fcc (1 0 0) metal surfaces has been extended to fcc (1 1 1) surfaces. The model treats uniformly all elementary steps of the process—O2 adsorption, dissociation, recombination, desorption, and atomic oxygen hopping—at various coverages and temperatures. The model employs the unity bond index—quadratic exponential potential (UBI-QEP) formalism to calculate coverage-dependent energetics (atomic and molecular binding energies and activation barriers of elementary steps) and a Metropolis-type algorithm including the Arrhenius-type reaction rates to calculate coverage- and temperature-dependent features, particularly the adsorbate distribution over the surface. Optimal values of non-energetic model parameters (the spatial constraint, a travel distance of “hot” atoms, attempt frequencies of elementary steps) have been chosen. Proper modifications of the fcc (1 0 0) model have been made to reflect structural differences in the fcc (1 1 1) surface, in particular the presence of two different hollow sites (fcc and hcp). Detailed simulations were performed for molecular oxygen adsorption on Ni(1 1 1). We found that at very low coverages, only O2 adsorption and dissociation were effective, while O2 desorption and O2 and O diffusion practically did not occur. At a certain O + O2 coverage, the O2 dissociation becomes the fastest process with a rate one-two orders of magnitude higher than adsorption. Dissociation continuously slows down due to an increase in the activation energy of dissociation and due to the exhaustion of free sites. The binding energies of both molecular and atomic oxygen decrease with coverage, and this leads to greater mobility of atomic oxygen and more pronounced desorption of molecular oxygen. Saturation is observed when the number of adsorbed molecules becomes approximately equal to the number of desorbed molecules. Simulated coverage dependences of the sticking probability and of the atomic binding energy are in reasonable agreement with experimental data. From comparison with the results of the previous work, it appears that the binding energy profiles for Ni(1 1 1) and Ni(1 0 0) have similar shapes, although at any coverage the absolute values of the oxygen binding energy are higher for the (1 0 0) surface. For metals other than Ni, particularly Pt, the model projections were found to be too parameter-dependent and therefore less certain. In such cases further model developments are needed, and we briefly comment on this situation.  相似文献   

7.
《Surface science》1996,365(2):310-318
Adsorption states of oxygen on Cu(111) at 100–300 K were investigated by means of HREELS. Two molecular species were characterized by different OO stretching frequencies (v(OO)) at 610 cm−1 and 820–870 cm−1, which are assigned to the peroxo-like species (O2−2) adsorbed in a bridged form and the one in a bidentate form bound on an atop site, respectively. The bridged peroxo species is preferred at the low coverage and the atop peroxo species becomes dominant at the higher coverage. In addition to the peaks due to the molecular oxygen, a peak assigned to v(CuO) of atomic oxygen was observed at 370 cm−1 at the high coverage. The frequency of this mode was higher than the frequency reported for Cu(111) exposed to oxygen above 300 K, indicating that the adsorption state of atomic oxygen formed at 100 K is different from that above 300 K. The v(OO) modes became faint after annealing to 170 K because of O2 dissociation. The v(CuO) mode of the atomic oxygen formed at 100 K remained up to 230 K and disappeared after annealing to 300 K. No desorption of O2 was detected on annealing to 300 K. It was also found that vibrational spectra for adsorbed NH3 are influenced by the adsorption states of atomic oxygen on Cu(111).  相似文献   

8.
《Solid State Ionics》2006,177(9-10):939-947
The interactions between oxygen molecules and a silver surface or a CeO2(111) supported atomic layer of silver are predicted using first-principles calculations based on spin polarized DFT with PAW method. The juncture between the CeO2(111), the atomic layer of silver, and O2 represents a triple-phase boundary (TPB) whereas the interface between silver surfaces and O2 corresponds to a 2-phase boundary (2PB) in a solid oxide fuel cell (SOFC). Results suggest that the O2 dissociation process on a monolayer of silver supported by CeO2(111) surfaces (or TPB) with oxygen vacancies has lower reaction barrier than on silver surfaces (or 2PB), and the dissociated oxygen ions can quickly bond with subsurface Ce atom via a barrierless and highly exothermic reaction. The oxygen vacancies at TPB are found to be responsible for the lower energy barrier and high exothermicity because of the strong interaction between subsurface Ce and adspecies, implying that oxygen molecules prefer being reduced at TPB than on silver surfaces (2PB). The results suggest that, for a silver-based cathode in a SOFC, the adsorption and dissociation of oxygen occur rapidly and the most stable surface oxygen species would be the dissociated oxygen ion with − 0.78|e| Bader charges; the rate of oxygen reduction is most likely limited by subsequent processes such as diffusion or incorporation of the oxygen ions into the electrolyte.  相似文献   

9.
We have studied electronic excitations at the surfaces of NiO (100), Cr2O3(111), and Al2O3(111) thin films with Electron Energy Loss Spectroscopy (EELS). On NiO (100) we observe surface electronic excitations in the energy range of the band gap which shift upon adsorption of NO. Ab initio cluster calculations show that these excitations occur within the Ni ions at the oxide surface. The (111) surface of Cr2O3 is characterized by distinct excitations which are also strongly influenced by the interaction with adsorbates. Temperature-dependent measurements show that two different states of the surface exist which are separated by an activation energy of about 10 meV. For Al2O3(111) we present data for a CO adsorbate. The oxide is quite inert with respect to CO adsorption as indicated by desorption temperatures between 38 K and 67 K. Due to the weak interaction with the substrate the a3II valence excitation of CO shows a clearly detectable vibrational splitting which has not been observed previously for a CO adsorbate in the (sub)monolayer coverage range. For several different adsorption state the lifetimes of the a3II state could be estimated from the halfwidths of the loss peaks, yielding values between 10–15 s for the most strongly bound species and 10–14 s for the CO multilayer.  相似文献   

10.
《Surface science》1986,171(1):L375-L378
The influence of the symmetry of molecular states on the neutralization and dissociation of molecular ions is demonstrated experimentally for O2+ and N2+ scattered from Ni(111).  相似文献   

11.
基于二阶矩近似反应力场方法构建的全维度势能面研究了氢分子及其同位素分子在钯表面的分解过程.在构建势能面的过程中数据库中只包含了氢分子与钯(111)表面相互作用的相关信息,该势能面在研究氢分子在钯(100)表面上的分解过程中表现出了非常好的可转移性.结果表明,氢分子及其同位素分子在钯(111)与钯(100)表面上的分解系数S0均随着入射能量的增加呈现非单调变化,并且通过固定分子取向的方法发现同核分子(H2、D2和T2)最有利分解取向角为90°,而异核分子(HD、HT和DT)受质心偏移的影响,其最有利分解取向角向大角度偏移.  相似文献   

12.
《Surface Science Reports》2014,69(4):366-388
Both density functional theory calculations and numerous experimental studies demonstrate a variety of unique features in metal supported oxide films and transition metal doped simple oxides, which are markedly different from their unmodified counterparts. This review highlights, from the computational perspective, recent literature on the properties of the above mentioned surfaces and how they adsorb and activate different species, support metal aggregates, and even catalyse reactions. The adsorption of Au atoms and clusters on metal-supported MgO films are reviewed together with the cluster׳s theoretically predicted ability to activate and dissociate O2 at the Au–MgO(100)/Ag(100) interface, as well as the impact of an interface vacancy to the binding of an Au atom. In contrast to a bulk MgO surface, an Au atom binds strongly on a metal-supported ultra-thin MgO film and becomes negatively charged. Similarly, Au clusters bind strongly on a supported MgO(100) film and are negatively charged favouring 2D planar structures. The adsorption of other metal atoms is briefly considered and compared to that of Au. Existing computational literature of adsorption and reactivity of simple molecules including O2, CO, NO2, and H2O on mainly metal-supported MgO(100) films is discussed. Chemical reactions such as CO oxidation and O2 dissociation are discussed on the bare thin MgO film and on selected Au clusters supported on MgO(100)/metal surfaces. The Au atoms at the perimeter of the cluster are responsible for catalytic activity and calculations predict that they facilitate dissociative adsorption of oxygen even at ambient conditions. The interaction of H2O with a flat and stepped Ag-supported MgO film is summarized and compared to bulk MgO. The computational results highlight spontaneous dissociation on MgO steps. Furthermore, the impact of water coverage on adsorption and dissociation is addressed. The modifications, such as oxygen vacancies and dopants, at the oxide–metal interface and their effect on the adsorption characteristics of water and Au are summarized. Finally, more limited computational literature on transition metal (TM) doped CaO(100) and MgO(100) surfaces is presented. Again, Au is used as a probe species. Similar to metal-supported MgO films, Au binds more strongly than on undoped CaO(100) and becomes negatively charged. The discussion focuses on rationalization of Au adsorption with the help of Born–Haber cycle, which reveals that the so-called redox energy including the electron transfer from the dopant to the Au atom together with the simultaneous structural relaxation of lattice atoms is responsible for enhanced binding. In addition, adsorption energy dependence on the position and type of the dopant is summarized.  相似文献   

13.
《Surface science》1996,364(2):L580-L586
The adsorption and decomposition of formic acid on NiO(111)-p(2 × 2) films grown on Ni(111) single crystal surface were studied by temperature-programmed desorption (TPD) spectroscopy. Exposure of formic acid at 163 K resulted in both molecular adsorption and dissociation to formate. The adsorbed formate underwent further dissociation to H2, CO2 and CO. H2 and CO2 desorbed at the same temperatures of 340, 390 and 520 K, while CO desorbed at 415 and 520 K. The desorption features varied with the formic acid exposure. Two reaction channels were identified for the decomposition of formate under equilibrium with gas-phase formic acid with a pressure of 2.5 × 10−4Pa, one preferentially producing H2 and CO2 with an activation energy of 22 ± 2 kJ mol−1 and the other preferentially producing CO and H2O with an activation energy of 16 ± 2 kJ mol−1. The order of both reaction paths was 0.5 with respect to the pressure of formic acid.  相似文献   

14.
We report on the modification of ferroelectric hysteresis in Pb(Nb,Zr,Ti)O3 thin films under the adsorption of CO2 gas. The samples were exposed to the gas in ultra high vacuum while different voltages between the top (Ag) and bottom (Pt) electrodes were applied. After dosing, the samples were heated from room temperature at 1.8 K/s, and a mass spectrometer was used to detect the desorbed molecules. The effective molecular sticking was demonstrated by the appearance of the carbon Auger peak in the surface of the sample and by the presence of CO2 in the desorption curves. After +(−) 9.9 V were applied to the bottom electrode during dosing, we found a shift of −0.52 (+0.58) μC/cm2 in the remnant polarization. These evidences suggest the existence of a depolarizing field induced by molecular adsorption at the surface of the top electrode, and contribute to highlight the potential use of ferroelectric thin films as gas sensors.  相似文献   

15.
We present a brief overview of recent studies and new theoretical results for electron-phonon interaction in the $\overline{Y}$ surface states on FCC(110) noble metal surfaces as well as in surface and quantum-well states of thin films. We discuss the oscillations of electron-phonon coupling parameter λ and the respective contribution to the lifetime broadening of these states. We analyse the effect of spin-orbit splitting of surface states on an electron-electron contribution to lifetimes of excited electrons (holes). Oscillations of the electron-electron contribution and quadratic dependence of the linewidth on energy is discussed for ultrathin Pb(111) films.  相似文献   

16.
Calculated electronic energy structure of an overlayer of water molecules chemisorbed on Si(111), with a molecular plane perpendicular to the surface, reveals that 3a1 molecular state is removed upon adsorption, and the resulting state densities cannot be reconciled with the UPS spectrum. These results, and state densities obtained from different atomic configurations are interpreted to rule out the molecular adsorption on Si(111) surface at room temperature.  相似文献   

17.
The adsorption and dissociation of O2 on CuCl(1 1 1) surface have been systematically studied by the density functional theory (DFT) slab calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on CuCl(1 1 1) surface and possible dissociation pathways are identified, and the optimized geometry, adsorption energy, vibrational frequency and Mulliken charge are obtained. The calculated results show that the favorable adsorption occurs at hollow site for O atom, and molecular O2 lying flatly on the surface with one O atom binding with top Cu atom is the most stable adsorption configuration. The O-O stretching vibrational frequencies are significantly red-shifted, and the charges transferred from CuCl to oxygen. Upon O2 adsorption, the oxygen species adsorbed on CuCl(1 1 1) surface mainly shows the characteristic of the superoxo (O2), which primarily contributes to improving the catalytic activity of CuCl, meanwhile, a small quantity of O2 dissociation into atomic O also occur, which need to overcome very large activation barrier. Our results can provide some microscopic information for the catalytic mechanism of DMC synthesis over CuCl catalyst from oxidative carbonylation of methanol.  相似文献   

18.
The adsorption, diffusion and dissociation properties of O2 on the icosahedron (Ih) Ni@Pt12 core-shell nanoparticle were investigated using the ab initio density functional theory calculations. It is found that, compared with the Pt(111) surface, the Ih Ni@Pt12 core-shell nanoparticle can enhance the adsorption, diffusion and dissociation of O2, as well as the adsorption and diffusion of the atomic O (the dissociation product of O2), and therefore serve as a good catalyst for oxygen reduction reaction. Our study gives a reasonable theoretical explanation to the high catalytic activity of the Ni@Pt core-shell nanoparticles for the oxygen reduction reaction.  相似文献   

19.
The dissociative adsorption of H2 on Rh(111) has been studied by high-dimensional quantum calculations using a coupled channel scheme. The potential energy surface was derived from ab initio total energy calculations using density functional theory together with the generalized gradient approximation to describe exchange-correlation effects. Experimentally, at high kinetic energy a step in the dissociative adsorption probability as a function of kinetic energy has been observed [M. Beutl et al., Surf. Sci. 429, 71 (1999)] which has been attributed to the opening up of a new adsorption channel. This feature in the dissociation probability is reproduced in the calculations for H2 molecules initially in the ro-vibrational ground state but it is not related to the opening up of an additional dissociation channel. Instead, it is caused by purely dynamical effects. In addition, rotational effects in the H2 dissociation are addressed.  相似文献   

20.
The temperature-programmed reaction (TPR) method, high-resolution electron energy loss spectroscopy (HREELS), and molecular beam method were used to elucidate the role surface reconstruction, subsurface oxygen (Osubs), and COads concentration play in the low-temperature oxidation of CO on the Pt(100), Pt(410), Pd(111), and Pd(110) surfaces. The possibility of the formation of so-called hot oxygen atoms, which arise at the surface at the instant of dissociation of O2ads molecules and can react with COads at low temperatures (~150 K) to form CO2, was examined. It was revealed that, when present in high concentration, COads initiates the phase transition of the Pt(100)-(hex) reconstructed surface into the (1 × 1) non-reconstructed one and blocks fourfold hollow sites of oxygen adsorption (Pt4-Oads), thereby initiating the formation of weakly bound oxygen (Pt2-Oads), active in CO oxidation. For the Pt(410), Pd(111), and Pd(110) surfaces, the reactivity of Oads with respect to CO was demonstrated to be dependent on the surface coverage of COads. The 18Oads isotope label was used to determine the nature of active oxygen reacting with CO at ~150–200 K. It was examined why a COads layer produces a strong effect on the reactivity of atomic oxygen. The experimental results were confirmed by theoretical calculations based on the minimization of the Gibbs energy of the adsorption layer. According to these calculations, the COads layer causes a decrease in the apparent activation energy E act of the reaction due to changes in the type of coordination and in the energy of binding of Oads atoms to the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号