首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
程荣军  程玉民  葛红霞 《中国物理 B》2009,18(10):4059-4064
The present paper deals with the numerical solution of a two-dimensional linear hyperbolic equation by using the element-free Galerkin (EFG) method which is based on the moving least-square approximation for the test and trial functions. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for hyperbolic problems needs only the scattered nodes instead of meshing the domain of the problem. It neither requires any element connectivity nor suffers much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for two-dimensional hyperbolic problems is investigated by two numerical examples in this paper.  相似文献   

2.
时婷玉  程荣军  葛红霞 《中国物理 B》2013,22(6):60210-060210
A generalized Fisher equation(GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance.The exact mathematical result of the GFE has been widely used in population dynamics and genetics,where it originated.Many researchers have studied the numerical solutions of the GFE,up to now.In this paper,we introduce an element-free Galerkin(EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics.Compared with other numerical methods,the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem.The Galerkin weak form is used to obtain the discrete equations,and the essential boundary conditions are enforced by the penalty method.In comparison with the traditional method,numerical solutions show that the new method has higher accuracy and better convergence.Several numerical examples are presented to demonstrate the effectiveness of the method.  相似文献   

3.
刘永庆  程荣军  葛红霞 《中国物理 B》2013,22(10):100204-100204
The present paper deals with the numerical solution of the coupled Schrdinger-KdV equations using the elementfree Galerkin(EFG) method which is based on the moving least-square approximation.Instead of traditional mesh oriented methods such as the finite difference method(FDM) and the finite element method(FEM),this method needs only scattered nodes in the domain.For this scheme,a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method.In numerical experiments,the results are presented and compared with the findings of the finite element method,the radial basis functions method,and an analytical solution to confirm the good accuracy of the presented scheme.  相似文献   

4.
王聚丰  孙凤欣  程荣军 《中国物理 B》2010,19(6):60201-060201
The present paper deals with the numerical solution of the third-order nonlinear KdV equation using the element-free Galerkin (EFG) method which is based on the moving least-squares approximation. A variational method is used to obtain discrete equations, and the essential boundary conditions are enforced by the penalty method. Compared with numerical methods based on mesh, the EFG method for KdV equations needs only scattered nodes instead of meshing the domain of the problem. It does not require any element connectivity and does not suffer much degradation in accuracy when nodal arrangements are very irregular. The effectiveness of the EFG method for the KdV equation is investigated by two numerical examples in this paper.  相似文献   

5.
In this paper, we introduce conformable variational iteration method (C-VIM), conformable fractional reduced differential transform method (CFRDTM) and conformable homotopy analysis method (C-HAM). Between these methods, the C-VIM is introduced for the first time for fractional partial differential equations (FPDEs). These methods are new versions of well-known VIM, RDTM and HAM. In addition, above-mentioned techniques are based on new defined conformable fractional derivative to solve linear and non-linear conformable FPDEs. Firstly, we present some basic definitions and general algorithm for proposal methods to solve linear and non-linear FPDEs. Secondly, to understand better, the presented new methods are supported by some examples. Finally, the obtained results are illustrated by the aid of graphics and the tables. The applications show that these new techniques C-VIM, CFRDTM and C-HAM are extremely reliable and highly accurate and it provides a significant improvement in solving linear and non-linear FPDEs.  相似文献   

6.
程荣军  程玉民 《物理学报》2011,60(7):70206-070206
基于移动最小二乘法在Sobolev空间Wk,p(Ω)中的误差估计以及弹性力学问题的变分弱形式中出现的双线性形式的连续性和强制性,研究了弹性力学问题的无单元Galerkin方法的误差分析以及数值解的误差和影响域半径之间的关系,给出了弹性力学问题的无单元Galerkin方法在Sobolev空间中的误差估计定理,并证明了当节点和形函数满足一定条件时该误差估计是最优阶的.从误差分析中可以看出,数值解的误差与权函数的影响域半径密切相关.最后,通过算例验证了结论的正确性. 关键词: 无网格方法 无单元Galerkin方法 弹性力学 误差估计  相似文献   

7.
刘金存  侯国林 《中国物理 B》2010,19(11):110305-110305
In this paper,the generalised two-dimensional differential transform method (DTM) of solving the time-fractional coupled KdV equations is proposed.The fractional derivative is described in the Caputo sense.The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial.An illustrative example shows that the generalised two-dimensional DTM is effective for the coupled equations.  相似文献   

8.
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method.  相似文献   

9.
势问题的无单元Galerkin方法的误差估计   总被引:1,自引:0,他引:1       下载免费PDF全文
程荣军  程玉民 《物理学报》2008,57(10):6037-6046
在高维情况下,首先研究了无单元Galerkin方法的形函数构造方法——移动最小二乘法在Sobolev空间Wk,p(Ω)中的误差估计.然后,在势问题的无单元Galerkin方法的基础上,研究了势问题的通过罚函数法施加本质边界条件的无单元Galerkin方法在Sobolev空间中的误差估计.当节点和形函数满足一定条件时,证明了该误差估计是最优阶的.从误差分析中可以看出,数值解的误差与权函数的影响半径密切相关.最后,通过算例验证了结论的正确性. 关键词: 无网格方法 无单元Galerkin方法 势问题 误差估计  相似文献   

10.
程荣军  程玉民 《中国物理 B》2011,20(7):70206-070206
The element-free Galerkin (EFG) method for numerically solving the compound Korteweg-de Vries-Burgers (KdVB) equation is discussed in this paper.The Galerkin weak form is used to obtain the discrete equation and the essential boundary conditions are enforced by the penalty method.The effectiveness of the EFG method of solving the compound Korteweg-de Vries-Burgers (KdVB) equation is illustrated by three numerical examples.  相似文献   

11.
唐耀宗  李小林 《中国物理 B》2017,26(3):30203-030203
We first give a stabilized improved moving least squares(IMLS) approximation, which has better computational stability and precision than the IMLS approximation. Then, analysis of the improved element-free Galerkin method is provided theoretically for both linear and nonlinear elliptic boundary value problems. Finally, numerical examples are given to verify the theoretical analysis.  相似文献   

12.
吴意  马永其  冯伟  程玉民 《中国物理 B》2017,26(8):80203-080203
The improved element-free Galerkin(IEFG) method of elasticity is used to solve the topology optimization problems.In this method, the improved moving least-squares approximation is used to form the shape function. In a topology optimization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin(EFG) method. The central processing unit(CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown.  相似文献   

13.
程玉民  李荣鑫  彭妙娟 《中国物理 B》2012,21(9):90205-090205
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method.  相似文献   

14.
In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the formulas for the generalized CH equation with the IEFG method. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed. The effectiveness of the IEFG method for the generalized CH equation is investigated by numerical examples in this paper.  相似文献   

15.
程荣军  程玉民 《中国物理 B》2016,25(2):20203-020203
By employing the improved moving least-square (IMLS) approximation, the improved element-free Galerkin (IEFG) method is presented for the unsteady Schrödinger equation. In the IEFG method, the two-dimensional (2D) trial function is approximated by the IMLS approximation, the variation method is used to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. Because the number of coefficients in the IMLS approximation is less than in the moving least-square (MLS) approximation, fewer nodes are needed in the entire domain when the IMLS approximation is used than when the MLS approximation is adopted. Then the IEFG method has high computational efficiency and accuracy. Several numerical examples are given to verify the accuracy and efficiency of the IEFG method in this paper.  相似文献   

16.
程荣军  葛红霞 《中国物理 B》2012,21(4):40203-040203
The element-free Galerkin (EFG) method is used in this paper to find the numerical solution to a regularized long-wave (RLW) equation. The Galerkin weak form is adopted to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. The effectiveness of the EFG method of solving the RLW equation is investigated by two numerical examples in this paper.  相似文献   

17.
The element-free Galerkin (EFG) method with penalty for Stokes problems is proposed and analyzed in this work. A priori error estimates of the penalty method, which is used to deal with Dirichlet boundary conditions, are derived to illustrate its validity in a continuous sense. Based on a feasible assumption, it is proved that there is a unique weak solution in the modified weak form of penalized Stokes problems. Then, the error bounds with the penalty factor for the EFG discretization are derived, which provide a rationale for choosing an efficient penalty factor. Numerical examples are given to confirm the theoretical results.  相似文献   

18.
彭妙娟  刘茜 《物理学报》2014,63(18):180203-180203
基于改进的复变量移动最小二乘法,提出了二维黏弹性问题的改进的复变量无单元Galerkin方法.采用改进的复变量移动最小二乘法建立形函数,根据Galerkin积分弱形式建立求解方程,并用罚函数法施加本质边界条件,推导了二维黏弹性问题的改进的复变量无单元Galerkin方法的计算公式.最后,通过实际算例,将计算结果与复变量无单元Galerkin方法及有限元法的结果进行了对比,说明了本文方法具有更高的计算精度和计算效率.  相似文献   

19.
Mathematical simulation of nonlinear physical and abstract systems is a very vital process for predicting the solution behavior of fractional partial differential equations(FPDEs)corresponding to different applications in science and engineering. In this paper, an attractive reliable analytical technique, the conformable residual power series, is implemented for constructing approximate series solutions for a class of nonlinear coupled FPDEs arising in fluid mechanics and fluid flow, which are often designed to demonstrate the behavior of weakly nonlinear and long waves and describe the interaction of shallow water waves. In the proposed technique the n-truncated representation is substituted into the original system and it is assumed the(n-1) conformable derivative of the residuum is zero. This allows us to estimate coefficients of truncation and successively add the subordinate terms in the multiple fractional power series with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some real-world applications. Finally, highlights and some closing comments are attached.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号