首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The scientific literature from 1997 (inclusive) to the present on the interfacial rheology of emulsifiers and proteins of relevance to food has been reviewed. Both shear and dilatational rheology of oil–water and air–water interfaces have been covered and the main factors affecting interfacial rheology have been tabulated. Special attention is paid to: the sensitivity of interfacial rheology to film composition and structure; the growing viewpoint of treating proteins films as a two-dimensional gel state; recent theoretical modelling of interfacial rheological effects; those few publications that attempt to relate interfacial rheology to bulk stability. It is concluded that there have been few major advances in the last 4 or 5 years, but the heterogeneity of such adsorbed films seems to be better recognised, both spatially and rheologically, with the challenge remaining to connect this picture to the stability of the corresponding bulk systems.  相似文献   

2.
Interaction of human serum albumin with poly(styrene)-b-poly(ethylene oxide) (PS-b-PEO) monolayer at air/solution interface was studied by measuring surface pressure. The density of PEO chains in the monolayer was controlled using Langmuir trough barriers. The thickness of PS-b-PEO monolayer prior to and after albumin adsorption was computed from in situ surface plasmon resonance (SPR) measurements. Depending on the initial PEO surface density the surface pressure kinetics of albumin insertion displayed two different regimes: below the PEO “pancake-brush” transition albumin binding was initially very rapid and itself induced the “pancake-brush” transition in the monolayer, and above the “pancake-brush” transition where some albumin penetration into the free PS-b-PEO monolayer still occurred into the PEO “brush”. In the case of SPR-immobilized monolayer, more than 0.1 PEO chain/nm2 was required to inhibit albumin or ferritin adsorption. A half-reduction of albumin adsorption required approx. three-fold higher PEO surface density than the half-reduction of ferritin adsorption.  相似文献   

3.
The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption.  相似文献   

4.
The effects of alkyl chain length and of differences in the length of the two alkyl chains on the formation of a monolayer of chemically synthesized corynomycolic acid (2-alkyl-3-hydroxy fatty acid) at the air-water interface were examined. Hydrophobic interactions between the two alkyl chains are required for the formation of a condensed film, which is most stable when the total number of carbon atoms in the two alkyl chains is 25 or more and the difference in their lengths is one. Syn-isomers form condensed films but usually not anti-isomers. However, films may also be formed by the anti-isomer when the alkyl chain at the carboxy group (the 2-position) is longer than the alkyl chain at the hydroxy group (the 3-position). That is, the contribution of anti-isomers to condensed film formation depends on the polar carboxy group which has greater involvement in this formation. The extrapolated area for the condensed film of corynomycolic acid was 40 Å2 per molecule, thus confirming that both the carboxy and hydroxy groups are present on the water surface when a bipolar monolayer is formed.  相似文献   

5.
Summary The mixed monolayers of poly-alanine + stearyl alcohol and poly-alanine + cholesterol were studied at the air-water interface. In the mixed monolayers the surface pressure-area isotherms showed three collapse states. The first and the third collapse pressures were identical in magnitude with the collapse pressures of pure components. The intermediate collapse pressure in the poly-alanine + stearyl alcohol was found to be ca. 5 dyne/cm higher than that was observed in the poly-alanine + cholesterol system. Further, the mixed films in both systems were found to show no deviation from the ideality rule. The magnitude o f the intermediate collapse state is shown to be related to the van der Waals forces present in the lipid films.With 6 figures  相似文献   

6.
The kinetics of surface film formation from DOPC small unilamellar vesicles spread at constant surface is studied, by measuring the time evolution of the surface pressure and of the surface potential. The thermodynamical approach describing the interfacial orientation process shows the importance of the electrical affinity of orientation and of the electrical surface pressure.  相似文献   

7.
Over the last decades numerous studies on the interfacial rheological response of protein adsorption layers have been published. The comparison of these studies and the retrieval of a common parameter to compare protein interfacial activity are hampered by the fact that different boundary conditions (e.g. physico-chemical, instrumental, interfacial) were used. In the present work we review previous studies and attempt a unifying approach for the comparison between bulk protein properties and their adsorption films. Among many common food grade proteins we chose bovine serum albumin, β-lactoglobulin and lysozyme for their difference in thermodynamic stability and studied their adsorption at the air/water and limonene/water interface. In order to achieve this we have i) systematically analyzed protein adsorption kinetics in terms of surface pressure rise using a drop profile analysis tensiometer and ii) we addressed the interfacial layer properties under shear stress using an interfacial shear rheometer under the same experimental conditions. We could show that thermodynamically less stable proteins adsorb generally faster and yield films with higher shear rheological properties at air/water interface. The same proteins showed an analog behavior when adsorbing at the limonene/water interface but at slower rates.  相似文献   

8.
Casein is well known to be a good protein emulsifier and β-casein is the major component of casein and commercial sodium caseinate. This work studies the behaviour of β-casein at the interface. The interfacial characteristics (structure and stability) of β-casein spread films have been examined at the air–water interface in a Langmuir-type film balance, as a function of temperature (5–40°C) and aqueous phase pH (pH 5 and 7). From surface pressure–area isotherms (πA isotherms) as a function of temperature we can draw a phase diagram. β-Casein spread films present two structures and the collapse phase. That is, there is a critical surface pressure and a surface concentration at which the film properties change significantly. This transition depends on the temperature and the aqueous phase pH. The film structure was observed to be more condensed and β-casein interfacial density was higher at pH 5. β-Casein films were stable at surface pressures lower than equilibrium surface pressure. In fact, no hysteresis was observed in πA isotherms after continuous compression-expansion cycles or over time. The relative area relaxation at constant surface pressure (10 or 20 mN m−1) and the surface pressure relaxation at constant area near the monolayer collapse, can be fitted by two exponential equations. The characteristic relaxation times in β-casein films can be associated with conformation–organization changes, hydrophilic group hydration and/or surface rheology, as a function of pH.  相似文献   

9.
To understand the role of the puroindolines (PIN-a and PIN-b) in the defense mechanism and stabilization of lipid films in the gas cell of bread dough, we have isolated the proteins and lipids from wheat seed endosperm and studied their interaction at the air/water interface using a Langmuir trough. The nature and shape of the pressure–area compression isotherms of the lipid monolayer in the presence of puroindolines in the subphase depended on the concentration of protein. A distinct phase separation occurred, when the concentration of protein in the subphase increased. The interfacial elasticity of the lipid monolayer in the presence of puroindolines in the subphase was higher than the pure lipid. Injection of protein beneath the preexisting lipid monolayer resulted in the increase of surface pressure due to the penetration of proteins. The extent of penetration depended on the nature of lipid head groups as well as on the initial surface pressure. The penetration of puroindolines to lipid monolayer was observed to be zero after crossing a critical initial surface pressure. The magnitude of the critical initial surface pressure for anionic lipids was significantly higher than the zwitterionic and nonionic lipids. The experimental results showed that both PIN-a and PIN-b had more affinity for anionic polar lipids than the neutral polar lipids and stabilized the lipid monolayer.  相似文献   

10.
Novel model compounds are desired to study properties of a narrow group of tetrameric acids from crude oil mainly responsible for naphthenate deposition. It is important to make a comparison to find to what degree the model compounds can reflect the properties of the indigenous tetraacids and where there are deviations, before using the model compounds in naphthenate research. A comparison between two synthesised model compounds and indigenous tetraacids has been carried out regarding physicochemical properties including thermal solid state properties, critical micelle concentrations, monolayer properties and interfacial reactions. Of the two studied model compounds, one was observed to form the same cross-linked network with Ca2+, a typical feature of the indigenous tetraacids. Interfacial reactions using the pendant drop technique also showed that four different divalent cations could all form this network with the model tetraacid. The film formation was however dependent on the ratio M2+/TA. The main deviations were in the solid state, where the model compounds showed crystalline transitions, contrary to the indigenous tetraacids. We conclude that the two different model compounds mimic the indigenous tetraacids well with respect to several of their properties and are suitable for use in naphthenate research.  相似文献   

11.
The measurements of the interfacial tension at the air/aqueous subphase interface as the function of pH were performed. The interfacial tension of the air–aqueous subphase interface was divided into contributions of individuals. A simple model of the influence of pH on the phosphatidylcholine monolayer at the air/hydrophobic chains of phosphatidylcholine is presented. The contributions of additive phosphatidylcholine forms (both interfacial tension values and molecular area values) depend on pH. The interfacial tension values and the molecular areas values for LH+, LOH forms of phosphatidylcholine were calculated. The assumed model was verified experimentally.  相似文献   

12.
Novel stearolic acid analogs (i.e., 9-octadecynoic acid analogs: 1a-d) containing the shorter perfluoroalkyl groups, CF3, C2F5, n-C3F7 or n-C4F9 group were synthesized. Equilibrium spreading pressures (πes) of their monolayers at the air-water interface were measured in order to demonstrate how the fluorine content has an effect on the stability of the fatty acid monolayers. As the fluorine content in stearolic acid molecule increased, its melting points was lowered indicating the solid bulk phase of stearolic acid became thermally unstable, while its monolayer stability evaluated by πe at 25 °C, dramatically increased and subsequently leveled off above a certain fluorine content. Under this condition, the replacement of at least five hydrogen atoms at the terminal hydrophobic segment in stearolic acid molecule by fluorine atoms (CF3CF2 group) was required to alter the bulk property of stearolic acid and exhibit the stabilization of monolayers, whereas further fluorination of stearolic acid had a minor effect on the monolayer stability. This behavior suggests the terminal fluorinated hydrophobic segment exclusively controls the interfacial stability of fatty acid monolayers.  相似文献   

13.
Diblock copolymers with hydrophilic poly(tert-butyl acrylate) (PtBA) and hydrophobic poly(styrene) (PS) blocks were synthesized with a view to use them as a surfactant in tear film for increasing the ocular comfort in dry eye syndrome. Interactions of six PtBA-PS copolymers with four important lipids found in the tear film, namely cholesterol, cholesteryl palmitate, dipalmitoyl phosphatidylcholine, and phosphatidylinositol, were studied at the air-water interface using a Langmuir trough. Thermodynamics of mixing of the copolymers and the lipids in the mixed monolayers was determined by calculating excess free energy of mixing. The diblock copolymers showed repulsive interactions with cholesteol and cholesteryl palmitate, near neutral interactions with dipalmitoyl phosphatidylcholine, and attractive interactions with phosphatidylinositol. The lipids interacted with the PS component of the copolymer. The results indicate that a copolymer with a small hydrophilic group and a big hydrophobic group can be a likely candidate for forming stable interactions with the lipids present in the tear film and hence increase the ocular comfort.  相似文献   

14.
The interactions between lipids (cholesterol, distearoylphosphatidylcholine, distearoylphosphatidylethanolamine and sphingomyelin) and the γ-globulin protein have been analyzed using the monolayer technique at the air–liquid interface. The analysis has been carried out using both state equations and an adequate thermodynamic formulation for the surface pressure (π)–molecular area (a) isotherms. Different parameters as the virial coefficients, have been estimated. For the uncharged lipid monolayers, the interactions between the molecules are of an attractive nature, at medium and long distance, and of a steric repulsive nature at short distance. At low surface pressures the lipid molecules form small domains. The net force between γ-Globulin molecules in the monolayers has been found to be attractive. Finally, it can be concluded that when the lipid monolayers are uncharged, there is practically no interaction between the protein and lipid molecules at the mentioned interface.  相似文献   

15.
The interfacial behavior of poly(isoprene-b-methyl methacrylate) diblock copolymers (PI-b-PMMA), with similar PMMA blocks but differing in the percentage of PI segments, SP19 (5% PI) and SP38 (52% PI), was studied at the air-water interface. The surface pressure-area (pi-A) isotherms, compression-expansion cycles, and relaxation curves were compared with those of the PMMA homopolymer. The short hydrophobic PI block of SP19 does not contribute to the mean molecular area at low surface pressures and yet has a negative contribution (condensing effect) when the surface pressure increases. On the contrary, the long PI block of SP38 contributes considerably to the surface area from low to high surface pressures. The A-t relaxation curves compare well with those of PMMA at low surface pressures (pi = 2 mN.m-1), but not at intermediate and high pressures (pi = 10, 30 mN.m-1), where a clear dependence on the length of the PI block was observed. The quantitative analysis of the relaxation curves at high pressures shows both a fast and slow component, attributed mostly to the local and middle-to-long-range reorganization of PMMA chains, respectively. PI-b-PMMA diblocks and PMMA were further blended with PS. The PS and PMMA are immiscible at the air-water interface. The addition of PS does not change the pi-A isotherm of PMMA, but the copolymers blended with PS form films that are more condensed at low pressures. The Langmuir-Blodgett (LB) films transferred onto mica substrates were analyzed by atomic force microscopy (AFM). The LB films of single diblocks are uniform, while those of PI-b-PMMA and PMMA blended with PS show aggregates with variable patterns.  相似文献   

16.
The dilational rheological behavior of gelatin molecules adsorbed at the air-water interface has been studied as a function of sodium dodecyl sulfate (SDS) concentration for a 7 wt % gelatin-SDS solution at 40 degrees C. Binding of SDS molecules to the gelatin strands disrupts the cross-linked network structure of adsorbed gelatin molecules and results in a reduction of the surface elastic modulus of the adsorbed layer that continues until the bulk SDS concentration reaches 1 mM. Beyond this SDS concentration, the dilational rheological properties of the adsorbed gelatin layer are indistinguishable from those of pure SDS adsorbed layers.  相似文献   

17.
Isotherms of surface pressure against surface area for a polyvinylacetate (PVAc) film at the air-water interface were determined at 20.52°C. Measurements of surface moment, hysteresis, and pressure relaxation in a constant area were subsequently conducted at appropriate area regions for elucidation of the correlation of properties and conformations of PVAc film. It is concluded that the film is stable and exhibits a perfectly reversible compression in the areas larger than 13 Å2/repeat-unit but assumes three different conformations for three regions (70-42), (42-25), and (25-13) Å2/repeat-unit, respectively. Finally, a twisting chain loop model is proposed for the interpretation of hysteresis and pressure relaxation occurring in the areas near and in the collapse region.  相似文献   

18.
19.
The ability of proteins to provide stability in foams is greatly influenced by their interfacial dilatational rheological properties. Surface tension response of a pulsatingbubble with an adsorbed layer of beta-lactoglobulin was measured for different frequencies and protein concentrations using a pulsating bubble tensiometer. A methodology, accounting for adsorption/desorption as well as variation of surface concentration due to expansion/contraction, was developed for the evaluation of surface dilatational elasticity and viscosity at different frequencies from these measurements. The adsorption rate constants were inferred from the surface pressure dynamics of protein adsorption using a Langmuir minitrough. The desorption rates were shown to be negligible for beta-lactoglobulin from the surface pressure response of a spread monolayer when subjected to compression in a Langmuir minitrough. The proposed model was employed to infer the interfacial dilatational viscosity and elasticity of an adsorbed beta-lactoglobulin layer at the air-water interface from experimental pulsating bubble data for protein concentrations in the range of 0.01-0.5 wt % at pH 7. As expected, the interfacial dilatational rheological properties were found to be higher at higher protein concentrations, this effect being less pronounced for dilatational elasticity. Heating at 80 degrees C for 30 min was found to result in higher interfacial dilatational viscosity and lower interfacial dilatational elasticity though this difference was within experimental error. The traditional approach for the inference of interfacial dilatational rheological properties is found to overpredict the interfacial dilatational elasticity whereas the viscosity values do not differ significantly from those obtained using the current analysis.  相似文献   

20.
Self-assembly is a versatile bottom-up approach for fabricating novel supramolecular materials with well-defined nano- or micro-structures associated with functionalities. The oil-water interface provides an ideal venue for molecular and colloidal self-assembly. This paper gives an overview of various self-assembled materials, including nanoparticles, polymers, proteins, and lipids, at the oil-water interface. Focus has been given to fundamental principles and strategies for engineering the self-assembly process, such as control of pH, ionic strength and use of external fields, to achieve complex soft materials with desired functionalities, such as nanoparticle surfactants, structured liquids, and proteinosomes. It has been shown that self-assembly at the oil-water interface holds great promise for developing well-structured complex materials useful for many research and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号