首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of alkyl radicals (R) with molecular oxygen (O(2)) are critical components in chemical models of tropospheric chemistry, hydrocarbon flames, and autoignition phenomena. The fundamental kinetics of the R + O(2) reactions is governed by a rich interplay of elementary physical chemistry processes. At low temperatures and moderate pressures, the reactions form stabilized alkylperoxy radicals (RO(2)), which are key chain carriers in the atmospheric oxidation of hydrocarbons. At higher temperatures, thermal dissociation of the alkylperoxy radicals becomes more rapid and the formation of hydroperoxyl radicals (HO(2)) and the conjugate alkenes begins to dominate the reaction. Internal isomerization of the RO(2) radicals to produce hydroperoxyalkyl radicals, often denoted by QOOH, leads to the production of OH and cyclic ether products. More crucially for combustion chemistry, reactions of the ephemeral QOOH species are also thought to be the key to chain branching in autoignition chemistry. Over the past decade, the understanding of these important reactions has changed greatly. A recognition, arising from classical kinetics experiments but firmly established by recent high-level theoretical studies, that HO(2) elimination occurs directly from an alkylperoxy radical without intervening isomerization has helped resolve tenacious controversies regarding HO(2) formation in these reactions. Second, the importance of including formally direct chemical activation pathways, especially for the formation of products but also for the formation of the QOOH species, in kinetic modeling of R + O(2) chemistry has been demonstrated. In addition, it appears that the crucial rate coefficient for the isomerization of RO(2) radicals to QOOH may be significantly larger than previously thought. These reinterpretations of this class of reactions have been supported by comparison of detailed theoretical calculations to new experimental results that monitor the formation of products of hydrocarbon radical oxidation following a pulsed-photolytic initiation. In this article, these recent experiments are discussed and their contributions to improving general models of alkyl + O(2) reactions are highlighted. Finally, several prospects are discussed for extending the experimental investigations to the pivotal questions of QOOH radical chemistry.  相似文献   

2.
The branching ratios for the reactions of attachment of hydroxyl radical to propene and hydrogen-atom abstraction were measured at 298 K over the buffer gas pressure range 60-400 Torr (N(2)) using a subatmospheric pressure turbulent flow reactor coupled with a chemical ionization quadrupole mass spectrometer. Isotopically enriched water H(2)(18)O was used to produce (18)O-labeled hydroxyl radicals in reaction with fluorine atoms. The β-hydroxypropyl radicals formed in the attachment reactions 1a and 1b , OH + C(3)H(6) → CH(2)(OH)C(?)HCH(3) (eq 1a ) and OH + C(3)H(6) → C(?)H(2)CH(OH)CH(3) (eq 1b ), were converted to formaldehyde and acetaldehyde in a sequence of secondary reactions in O(2)- and NO-containing environment. The (18)O-labeling propagates to the final products, allowing determination of the branching ratio for the attachment channels of reaction 1. The measured branching ratio for attachment is β(1b) = k(1b)/(k(1a) + k(1b)) = 0.51 ± 0.03, independent of pressure over the 60-400 Torr pressure range. An upper limit on the hydrogen-abstraction channel, OH + C(3)H(6) → H(2)O + C(3)H(5) (eq 1c ), was determined by measuring the water yield in reactions of OH and OD radicals (produced via H(D) + NO(2) → OH(OD) + NO reactions) with C(3)H(6) as k(1c)/(k(1a) + k(1b) + k(1c)) < 0.05 (at 298 K, 200 Torr N(2)).  相似文献   

3.
The major bimolecular product of alkyl + O(2) reactions is alkene + hydroperoxyl radical (HO(2)), but in the reverse direction, the reactants are reformed to a very limited extent only. The most important products of the alkene + HO(2) reactions are alkylperoxy radical (ROO(?)), hydroxyl radical (OH) + cyclic ether, and the corresponding hydroperoxyalkyl ((?)QOOH) species. Moreover, abstraction of allylic hydrogens can compete with the addition, further complicating the possible outcome of this reaction type and its effect on low-temperature combustion chemistry. In this paper, six alkene + HO(2) reactions and the reaction between an unsaturated oxygenate and HO(2) are studied based on previously established potential energy surfaces. The studied unsaturated compounds are ethene, propene, 1-butene, trans-2-butene, isobutene, cyclohexene, and vinyl alcohol. Using multiwell master equations, temperature- (300-1200 K) and pressure-dependent rate coefficients and branching fractions are calculated for these reactions. The importance of this reaction type for the combustion of unsaturated compounds is also assessed, and we show that, to get reliable results, it is important to include the pressure-dependence of the rate coefficients in the calculations.  相似文献   

4.
The unimolecular reactions of hydroperoxy alkyl radicals (QOOH) play a central role in the low-temperature oxidation of hydrocarbons as they compete with the addition of a second O(2) molecule, which is known to provide chain-branching. In this work we present high-pressure rate estimation rules for the most important unimolecular reactions of the β-, γ-, and δ-QOOH radicals: isomerization to RO(2), cyclic ether formation, and selected β-scission reactions. These rate rules are derived from high-pressure rate constants for a series of reactions of a given reaction class. The individual rate expressions are determined from CBS-QB3 electronic structure calculations combined with canonical transition state theory calculations. Next we use the rate rules, along with previously published rate estimation rules for the reactions of alkyl peroxy radicals (RO(2)), to investigate the potential impact of falloff effects in combustion/ignition kinetic modeling. Pressure effects are examined for the reaction of n-butyl radical with O(2) by comparison of concentration versus time profiles that were obtained using two mechanisms at 10 atm: one that contains pressure-dependent rate constants that are obtained from a QRRK/MSC analysis and another that only contains high-pressure rate expressions. These simulations reveal that under most conditions relevant to combustion/ignition problems, the high-pressure rate rules can be used directly to describe the reactions of RO(2) and QOOH. For the same conditions, we also address whether the various isomers equilibrate during reaction. These results indicate that equilibrium is established between the alkyl, RO(2), and γ- and δ-QOOH radicals.  相似文献   

5.
DeSain JD  Taatjes CA  Miller JA  Klippenstein SJ  Hahn DK 《Faraday discussions》2001,(119):101-20; discussion 121-43
The time-resolved production of HO2 in the Cl-initiated oxidation of iso- and n-butane is measured using continuous-wave (CW) infrared frequency modulation spectroscopy between 298 and 693 K. The yield of HO2 is determined relative to the Cl2/CH3OH/O2 system. As in studies of smaller alkanes, the branching fraction to HO2 + alkene in butyl + O2 displays a dramatic rise with increasing temperature between about 550 and 700 K (the "transition region") which is accompanied by a qualitative change in the time behavior of the HO2 production. At low temperatures the HO2 is formed promptly; a second, slower production of HO2 is responsible for the bulk of the increased yield in the transition temperature region. In contrast to reactions of smaller alkyl radicals with O2, the total HO2 yield in the butyl radical reactions appears to remain significantly below 1 up to 700 K, implying a significant role for OH-producing channels. The slower HO2 production in butane oxidation displays an apparent activation energy similar to that measured for smaller alkyl + O2 reactions, suggesting that the energetics of the HO2 elimination transition state are similar for a broad range of R + O2 systems. A combination of QCISD(T) based characterizations of the propyl and butyl + O2 potential energy surfaces and master equation based characterization of the propyl + O2 kinetics provide the framework for explanation of the experimentally observed HO2 production in Cl-initiated propane and butane oxidation. These calculations suggest that the HO2 elimination channel is similar in all reaction systems, and that hydroperoxyalkyl (QOOH) species produced by internal H-atom abstraction in RO2 can provide a path to OH formation. However, the QOOH formed by the energetically favorable 1,5 isomerization (via a six-membered ring transition state) generally experiences significant barriers (relative to the radical + O2 reactants) to the production of an oxetane + OH. In contrast, the barriers to forming OH + an oxirane or an oxolane, via 1,4 or 1,6 isomerizations, respectively, are generally below reactants.  相似文献   

6.
Oxiranes are a class of cyclic ethers formed in abundance during low‐temperature combustion of hydrocarbons and biofuels, either via chain‐propagating steps that occur from unimolecular decomposition of β‐hydroperoxyalkyl radicals (β‐?QOOH) or from reactions of HO? with alkenes. Ethyloxirane is one of four alkyl‐substituted cyclic ether isomers produced as an intermediate from n‐butane oxidation. While rate coefficients for β‐?QOOH → ethyloxirane + ?H are reported extensively, subsequent reaction mechanisms of the cyclic ether are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe ethyloxirane consumption by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present work provides fundamental insight on reaction mechanisms of ethyloxirane in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred from the detection of products during chlorine atom‐initiated oxidation experiments using multiplexed photoionization mass spectrometry conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, calculations of stationary point energies were conducted using the ccCA‐PS3 composite method on ?R + O2 potential energy surfaces for the four ethyloxiranyl radical isomers, which produced barrier heights for 24 reaction pathways. In addition to products from ?QOOH → cyclic ether + ?H and ?R + O2 → conjugate alkene + HO?, both of which were significant pathways and are prototypical to alkane oxidation, other species were identified from ring‐opening of both ethyloxiranyl and ?QOOH radicals. The latter occurs when the unpaired electron is localized on the ether group, causing the initial ?QOOH structure to ring‐open and form a resonance‐stabilized ketohydroperoxide‐type radical. The present work provides the first analysis of ethyloxirane oxidation chemistry, which reveals that consumption pathways are complex and may require an expansion of submechanisms to increase the fidelity of chemical kinetics mechanisms.  相似文献   

7.
Unimolecular isomerization and decomposition reactions of alkylperoxy (RO(2)), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O(2)QOOH) radicals play important roles in the low-temperature oxidation of hydrocarbons. In this study, these reactions have been investigated by the CBS-QB3 quantum chemical method, and the variation of the rate parameters by the structural change of alkyl groups has been studied systematically for the rule-based construction of the low-temperature oxidation mechanisms of arbitrary noncyclic alkanes. The results can be well-interpreted in terms of the group additivity and the ring-strain effect of the cyclic transition states. To extract the important processes needed for the chemical kinetic modeling, the competing reaction channels were compared in detail by steady-state analysis with the high-pressure limiting rate constants. The importance of some reactions of O(2)QOOH radicals, which have not been considered in the previous modeling studies, such as the hydrogen exchange reactions between -OOH and -OO(?) groups and hydrogen shift reactions from non-OOH sites, is suggested.  相似文献   

8.
Products of the reaction of OH radicals with propene, trans-2-butene, and 1-butene have been investigated in a fast flow reactor, coupled with time-of-flight mass spectrometry, at pressures between 0.8 and 3.0 Torr. The product determination includes H atom abstraction channels as well as site-specific OH addition. The OH radicals are produced by the H + NO(2) → OH + NO reaction or by the F + H(2)O → OH + HF reaction, the H or F atoms being produced in a microwave discharge. The gas mixture is ionized using single photon ionization (SPI at 10.54 eV), and products are detected using time-of-flight mass spectrometry (TOF-MS). The H atom abstraction channels are measured to be <2% for OH + propene, 8 ± 3% for OH + 1-butene, and 3 ± 1% for OH + trans-2-butene. Analysis of ion fragmentation patterns leads to 72 ± 16% OH addition to the propene terminal C atom and 71 ± 16% OH addition to the 1-butene terminal C atom. The errors bars represent 95% confidence intervals and include estimated uncertainties in photoionization cross sections.  相似文献   

9.
An important chemical sink for organic peroxy radicals (RO(2)) in the troposphere is reaction with hydroperoxy radicals (HO(2)). Although this reaction is typically assumed to form hydroperoxides as the major products (R1a), acetyl peroxy radicals and acetonyl peroxy radicals have been shown to undergo other reactions (R1b) and (R1c) with substantial branching ratios: RO(2) + HO(2) → ROOH + O(2) (R1a), RO(2) + HO(2) → ROH + O(3) (R1b), RO(2) + HO(2) → RO + OH + O(2) (R1c). Theoretical work suggests that reactions (R1b) and (R1c) may be a general feature of acyl peroxy and α-carbonyl peroxy radicals. In this work, branching ratios for R1a-R1c were derived for six carbonyl-containing peroxy radicals: C(2)H(5)C(O)O(2), C(3)H(7)C(O)O(2), CH(3)C(O)CH(2)O(2), CH(3)C(O)CH(O(2))CH(3), CH(2)ClCH(O(2))C(O)CH(3), and CH(2)ClC(CH(3))(O(2))CHO. Branching ratios for reactions of Cl-atoms with butanal, butanone, methacrolein, and methyl vinyl ketone were also measured as a part of this work. Product yields were determined using a combination of long path Fourier transform infrared spectroscopy, high performance liquid chromatography with fluorescence detection, gas chromatography with flame ionization detection, and gas chromatography-mass spectrometry. The following branching ratios were determined: C(2)H(5)C(O)O(2), Y(R1a) = 0.35 ± 0.1, Y(R1b) = 0.25 ± 0.1, and Y(R1c) = 0.4 ± 0.1; C(3)H(7)C(O)O(2), Y(R1a) = 0.24 ± 0.15, Y(R1b) = 0.29 ± 0.1, and Y(R1c) = 0.47 ± 0.15; CH(3)C(O)CH(2)O(2), Y(R1a) = 0.75 ± 0.13, Y(R1b) = 0, and Y(R1c) = 0.25 ± 0.13; CH(3)C(O)CH(O(2))CH(3), Y(R1a) = 0.42 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.58 ± 0.1; CH(2)ClC(CH(3))(O(2))CHO, Y(R1a) = 0.2 ± 0.2, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2; and CH(2)ClCH(O(2))C(O)CH(3), Y(R1a) = 0.2 ± 0.1, Y(R1b) = 0, and Y(R1c) = 0.8 ± 0.2. The results give insights into possible mechanisms for cycling of OH radicals in the atmosphere.  相似文献   

10.
The kinetic properties of the carbon-fluorine radicals are little understood except those of CFn (n =1-3). In this article, a detailed mechanistic study was reported on the gas-phase reaction between the simplest pi-bonded C2F radical and water as the first attempt to understand the chemical reactivity of the C2F radical. Various reaction channels are considered. The most kinetically competitive channel is the quasi-direct hydrogen-abstraction route forming P5 HCCF + OH. At the CCSD(T)/6-311+G(2d,2p)//B3LYP/6-311G(d,p)+ZPVE, CCSD(T)/6-311+G(3df,2p)//QCISD/6-311G(d,p)+ZPVE and Gaussian-3//B3LYP/6-31G(d) levels, the overall H-abstraction barriers (4.5, 4.7, and 4.2 kcal/mol) for the C2F + H2O reaction are comparable to the corresponding values (5.5, 3.7, and 5.7 kcal/mol) for the analogous C2H + H2O reaction. This suggests that C2F is a reactive radical like the extensively studied C2H, in contrast to the situation of the CF and CF2 radicals that have much lower reactivity than the corresponding hydrocarbon species. Thus, the C2F radical is expected to play an important role in the combustion processes of the carbon-fluorine chemistry. Furthermore, addition of a second H2O can catalyze the reaction with the H-abstraction barrier significantly reduced to a marginally zero value (0.5 kcal/mol). This is also indicative of the potential relevance of the title reactions in the low-temperature atmospheric chemistry.  相似文献   

11.
Alkyl substituted aromatics are present in fuels and in the environment because they are major intermediates in the oxidation or combustion of gasoline, jet, and other engine fuels. The major reaction pathways for oxidation of this class of molecules is through loss of a benzyl hydrogen atom on the alkyl group via abstraction reactions. One of the major intermediates in the combustion and atmospheric oxidation of the benzyl radicals is benzaldehyde, which rapidly loses the weakly bound aldehydic hydrogen to form a resonance stabilized benzoyl radical (C6H5C(?)═O). A detailed study of the thermochemistry of intermediates and the oxidation reaction paths of the benzoyl radical with dioxygen is presented in this study. Structures and enthalpies of formation for important stable species, intermediate radicals, and transition state structures resulting from the benzoyl radical +O2 association reaction are reported along with reaction paths and barriers. Enthalpies, ΔfH298(0), are calculated using ab initio (G3MP2B3) and density functional (DFT at B3LYP/6-311G(d,p)) calculations, group additivity (GA), and literature data. Bond energies on the benzoyl and benzoyl-peroxy systems are also reported and compared to hydrocarbon systems. The reaction of benzoyl with O2 has a number of low energy reaction channels that are not currently considered in either atmospheric chemistry or combustion models. The reaction paths include exothermic, chain branching reactions to a number of unsaturated oxygenated hydrocarbon intermediates along with formation of CO2. The initial reaction of the C6H5C(?)═O radical with O2 forms a chemically activated benzoyl peroxy radical with 37 kcal mol(-1) internal energy; this is significantly more energy than the 21 kcal mol(-1) involved in the benzyl or allyl + O2 systems. This deeper well results in a number of chemical activation reaction paths, leading to highly exothermic reactions to phenoxy radical + CO2 products.  相似文献   

12.
The mutual sensitization of the oxidation of NO and a natural gas blend (methane-ethane 10:1) was studied experimentally in a fused silica jet-stirred reactor operating at 10 atm, over the temperature range 800-1160 K, from fuel-lean to fuel-rich conditions. Sonic quartz probe sampling followed by on-line FTIR analyses and off-line GC-TCD/FID analyses were used to measure the concentration profiles of the reactants, the stable intermediates, and the final products. A detailed chemical kinetic modeling of the present experiments was performed yielding an overall good agreement between the present data and this modeling. According to the proposed kinetic scheme, the mutual sensitization of the oxidation of this natural gas blend and NO proceeds through the NO to NO2 conversion by HO2, CH3O2, and C2H5O2. The detailed kinetic modeling showed that the conversion of NO to NO2 by CH3O2 and C2H5O2 is more important at low temperatures (ca. 820 K) than at higher temperatures where the reaction of NO with HO2 controls the NO to NO2 conversion. The production of OH resulting from the oxidation of NO by HO2, and the production of alkoxy radicals via RO2 + NO reactions promotes the oxidation of the fuel. A simplified reaction scheme was delineated: NO + HO2 --> NO2 + OH followed by OH + CH4 --> CH3 + H2O and OH + C2H6 --> C2H5 + H2O. At low-temperature, the reaction also proceeds via CH3 + O2 (+ M) --> CH3O2 (+ M); CH3O2 + NO --> CH3O + NO2 and C2H5 + O2 --> C2H5O2; C2H5O2 + NO --> C2H5O + NO2. At higher temperature, methoxy radicals are produced via the following mechanism: CH3 + NO2 --> CH3O + NO. The further reactions CH3O --> CH2O + H; CH2O + OH --> HCO + H2O; HCO + O2 --> HO2 + CO; and H + O2 + M --> HO2 + M complete the sequence. The proposed model indicates that the well-recognized difference of reactivity between methane and a natural gas blend is significantly reduced by addition of NO. The kinetic analyses indicate that in the NO-seeded conditions, the main production of OH proceeds via the same route, NO + HO2 --> NO2 + OH. Therefore, a significant reduction of the impact of the fuel composition on the kinetics of oxidation occurs.  相似文献   

13.
Oxiranes are a class of cyclic ethers formed in abundance during low‐temperature combustion of hydrocarbons and biofuels, either via chain‐propagating steps that occur from unimolecular decomposition of β‐hydroperoxyalkyl radicals (β‐?QOOH) or from reactions of H?O with alkenes. The cis‐ and trans‐isomers of 2,3‐dimethyloxirane are intermediates of n‐butane oxidation, and while rate coefficients for β‐?QOOH → 2,3‐dimethyloxirane + ?OH are reported extensively, subsequent reaction mechanisms of the cyclic ethers are not. As a result, chemical kinetics mechanisms commonly adopt simplified chemistry to describe the consumption of 2,3‐dimethyloxirane by convoluting several elementary reactions into a single step, which may introduce mechanism truncation error—uncertainty derived from missing or incomplete chemistry. The present research examines the isomer dependence of 2,3‐dimethyloxirane reaction mechanisms in support of ongoing efforts to minimize mechanism truncation error. Reaction mechanisms are inferred via the detection of products from Cl‐initiated oxidation of both cis‐2,3‐dimethyloxirane and trans‐2,3‐dimethyloxirane using multiplexed photoionization mass spectrometry (MPIMS). The experiments were conducted at 10 Torr and temperatures of 650 K and 800 K. To complement the experiments, the enthalpies of stationary points on the ?R + O2 surfaces were computed at the ccCA‐PS3 level of theory. In total, 28 barrier heights were computed on the 2,3‐dimethyloxiranylperoxy surfaces. Two notable aspects are low‐lying pathways that form resonance‐stabilized ketohydroperoxide‐type radicals caused by ?QOOH ring‐opening when the unpaired electron is localized adjacent to the ether group, and cistrans isomerization of ?R and ?QOOH radicals, via inversion, which enable reaction pathways otherwise restricted by stereochemistry. Several species were identified in the MPIMS experiments from ring opening of 2,3‐dimethyloxiranyl radicals. Neither of the two conjugate alkene isomers prototypical of ?R + O2 reactions were detected. Products were also identified from decomposition of ketohydroperoxide‐type radicals. The present work provides the first analysis of 2,3‐dimethyloxirane oxidation chemistry and reveals that consumption pathways are complex and require the expansion of submechanisms in chemical kinetics mechanisms.  相似文献   

14.
Using a crossed laser-molecular beam scattering apparatus and tunable photoionization detection, these experiments determine the branching to the product channels accessible from the 2-hydroxyethyl radical, the first radical intermediate in the addition reaction of OH with ethene. Photodissociation of 2-bromoethanol at 193 nm forms 2-hydroxyethyl radicals with a range of vibrational energies, which was characterized in our first study of this system ( J. Phys. Chem. A 2010 , 114 , 4934 ). In this second study, we measure the relative signal intensities of ethene (at m/e = 28), vinyl (at m/e = 27), ethenol (at m/e = 44), formaldehyde (at m/e = 30), and acetaldehyde (at m/e = 44) products and correct for the photoionization cross sections and kinematic factors to determine a 0.765:0.145:0.026:0.063:<0.01 branching to the OH + C(2)H(4), H(2)O + C(2)H(3), CH(2)CHOH + H, H(2)CO + CH(3), and CH(3)CHO + H product asymptotes. The detection of the H(2)O + vinyl product channel is surprising when starting from the CH(2)CH(2)OH radical adduct; prior studies had assumed that the H(2)O + vinyl products were solely from the direct abstraction channel in the bimolecular collision of OH and ethene. We suggest that these products may result from a frustrated dissociation of the CH(2)CH(2)OH radical to OH + ethene in which the C-O bond begins to stretch, but the leaving OH moiety abstracts an H atom to form H(2)O + vinyl. We compare our experimental branching ratio to that predicted from statistical microcanonical rate constants averaged over the vibrational energy distribution of our CH(2)CH(2)OH radicals. The comparison suggests that a statistical prediction using 1-D Eckart tunneling underestimates the rate constants for the branching to the product channels of OH + ethene, and that the mechanism for the branching to the H(2)O + vinyl channel is not adequately treated in such theories.  相似文献   

15.
The formation and the decomposition of chemically activated cyclopentoxy radicals from the c-C5H9 + O reaction have been studied in the gas phase at room temperature. Two different experimental arrangements have been used. Arrangement A consisted of a laser-flash photolysis set up combined with quantitative Fourier transform infrared spectroscopy and allowed the determination of the stable products at 4 mbar. The c-C5H9 radicals were produced via the reaction c-C5H10 + Cl with chlorine atoms from the photolysis of CFCl3; the O atoms were generated by photolysis of SO2. Arrangement B, a conventional discharge flow-reactor with molecular beam sampling, was used to determine the rate coefficient. Here, the hydrocarbon radicals (c-C5H9, C2H5, CH2OCH3) were produced via the reaction of atomic fluorine with c-C5H10, C2H6, and CH3OCH3, respectively, and detected by mass spectrometry after laser photoionization. For the c-C5H9 + O reaction, the relative contributions of intermediate formation (c-C5H9O) and direct abstraction (c-C5H8 + OH) were found to be 68 +/- 5 and 32 +/- 4%, respectively. The decomposition products of the chemically activated intermediate could be identified, and the following relative branching fractions were obtained: c-C5H8O + H (31 +/- 2%), CH2CH(CH2)2CHO + H (40 +/- 5%), 2 C2H4 + H + CO (17 +/- 5%), and C3H4O + C2H4 + H (12 +/- 5%). Additionally, the product formation of the c-C5H8 + O reaction was studied, and the following relative yields were obtained (mol %): C2H4, 24%; C3H4O, 18%; c-C5H8O, 30%; c-C5H8O, 23%; 4-pentenal, 5%. The rate coefficient of the c-C5H9 + O reaction was determined relative to the reactions C2H5 + O and CH3OCH2 + O leading to k = (1.73 +/- 0.05) x 10(14) cm3 mol(-1) s(-1). The experimental branching fractions are analyzed in terms of statistical rate theory with molecular and transition-state data from quantum chemical calculations, and high-pressure limiting Arrhenius parameters for the unimolecular decomposition reactions of C5H9O species are derived.  相似文献   

16.
The reactions CH(3)CO + O(2)--> products (1), CH(3)CO + O(2)--> OH +other products (1b) and CH(3)C(O)CH(2) + O(2)--> products (2) have been studied in isothermal discharge flow reactors with laser induced fluorescence monitoring of OH and CH(3)C(O)CH(2) radicals. The experiments have been performed at overall pressures between 1.33 and 10.91 mbar of helium and 298 +/- 1 K reaction temperature. OH formation has been found to be the dominant reaction channel for CH(3)CO + O(2): the branching ratio, Gamma(1b) = k(1b)/k(1), is close to unity at around 1 mbar, but decreases rapidly with increasing pressure. The rate constant of the overall reaction, k(2), has been found to be pressure dependent: the fall-off behaviour has been analysed in comparison with reported data. Electronic structure calculations have confirmed that at room temperature the reaction of CH(3)C(O)CH(2) with O(2) is essentially a recombination-type process. At high temperatures, the further reactions of the acetonyl-peroxyl adduct may yield OH radicals, but the most probable channel seems to be the O(2)-catalysed keto-enol transformation of acetonyl. Implications of the results for atmospheric modelling studies have been discussed.  相似文献   

17.
The reaction of HO2NO2 (peroxynitric acid, PNA) with OH was studied by the hybrid density functional B3LYP and CBS-QB3 methods. Based on the calculated potential energy surface, five reaction channels, H2O+NO2+O2, HOOH+NO3, NO2+HO3H, HO2+HONO2 and HO2+HOONO, were examined in detail. The major reaction channel is PNA+OH→M1→TS1→H2O+NO2+O2. Taking a pre-equilibrium approximation and using the CBS-QB3 energies, the theoretical rate constant of this channel was calculated as 1.13×10-12 cm3/(molecule s) at 300 K, in agreement with the experimental result. Comparison between reactions of HOONO2+OH and HONO2+OH was carried out. For HOR+OH reactions, the total rate constants increase from R=NO2 to R=ONO2, which is consistent with experimental measurements.  相似文献   

18.
The initial state-selected time-dependent wave packet approach is employed to study the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H, HOH' + D exchange reactions with both OH bonds in the H(2)O reactant and OH(D) bond in the HOD reactant treated as reactive bonds. The total reaction probabilities for different partial waves, as well as the integral cross sections, which are the exact CC (coupled-channel) results, are first obtained in this study for the H(2)O(HOD) reactant initially in the ground rovibrational state. Because of the shallow C(3v) minimum along the reaction path, the reaction probabilities for the three reactions present several resonance peaks, with one dominant resonance peak just above the threshold. The cross sections for the H' + HOD → HOH' + D reaction are substantially smaller than those for the H' + H(2)O → H'OH + H and H' + HOD → H'OD + H reactions, indicating that the H'/H exchange reactions are much more favored. In the CC calculations, the resonance peaks in the reaction probabilities diminish quickly with the increase in total angular momenta J, resulting in the existence of a clear step-like feature just above the threshold in the cross sections for the title reactions, which manifests the signature of shape resonances in these reactions. In the CS calculations, the resonance peaks on reaction probabilities persist in many partial waves, and thus the resonance structures can no longer survive the partial-wave summation and are washed out completely in the CS cross sections for the title reactions.  相似文献   

19.
The atmospheric chemistry of (CF3)2CHOCH3, a possible HCFC/HFC alternative, was studied using a smog chamber/FT-IR technique. OH radicals were prepared by the photolysis of ozone in a 200-Torr H2O/O3/O2 gas mixture held in an 11.5-dm3 temperature-controlled chamber. The rate constant, k1, for the reaction of (CF3)2CHOCH3 with OH radicals was determined to be (1.40 +/- 0.28) x 10(-12) exp[(-550 +/- 60)/T] cm3 molecule(-1) s(-1) by means of a relative rate method at 253-328 K. The value of k1 at 298 K was (2.25 +/- 0.04) x 10(-13) cm3 molecule(-1) s(-1). The random errors are reported with +/-2 standard deviations, and potential systematic errors of 15% could increase k(1). In considering OH-radical reactions, we estimated the tropospheric lifetime of (CF3)2CHOCH3 to be 2.0 months using the rate constant at 288 K. The degradation mechanism of (CF3)2CHOCH3 initiated by OH radicals was also investigated using FT-IR spectroscopy at 298 K. Products (CF3)2CHOC(O)H, CF3C(OH)2CF3, CF3C(O)OCH3, and COF(2) were identified and quantified. The branching ratio, k1a/k1b, was estimated to be 2.1:1 for reactions (CF3)2CHOCH3 + OH --> (CF3)2CHOCH2*+ H2O (k1a) and (CF3)2CHOCH3 + OH --> (CF3)2C*OCH3 + H2O (k1b).  相似文献   

20.
In this paper, we report a detailed analysis of the breakdown kinetic mechanism for methyl butanoate (MB) using theoretical approaches. Electronic structures and structure-related molecular properties of reactants, intermediates, products, and transition states were explored at the BH&HLYP/cc-pVTZ level of theory. Rate constants for the unimolecular and bimolecular reactions in the temperature range of 300-2500 K were calculated using Rice-Ramsperger-Kassel-Marcus and transition state theories, respectively. Thirteen pathways were identified leading to the formation of small compounds such as CH(3), C(2)H(3), CO, CO(2), and H(2)CO. For the initial formation of MB radicals, H, CH(3), and OH were considered as reactive radicals participating in hydrogen abstraction reactions. Kinetic simulation results for a high temperature pyrolysis environment show that MB radicals are mainly produced through hydrogen abstraction reactions by H atoms. In addition, the C(O)OCH(3) = CO + CH(3)O reaction is found to be the main source of CO formation. The newly computed kinetic sub-model for MB breakdown is recommended as a core component to study the combustion of oxygenated species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号