首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkylzinc complexes, (Ttz(R,Me))ZnR' (R = tBu, Ph; R' = Me, Et), show interesting reactivity with acids, bases and water. With acids (e.g. fluorinated alcohols, phenols, thiophenol, acetylacetone, acetic acid, HCl and triflic acid) zinc complexes of the conjugate base (CB), (Ttz(R,Me))ZnCB, are generated. Thus the B-N bonds in Ttz ligands are acid stable. (Ttz(R,Me))ZnCB complexes were characterized by (1)H, (13)C-NMR, IR, MS, elemental analysis, and, in most cases, single crystal X-ray diffraction. The four coordinate crystal structures included (Ttz(R,Me))Zn(CB) [where R = Ph, CB (conjugate base) = OCH(2)CF(3) (2), OPh (6), SPh (8), p-OC(6)H(4)(NO(2)) (10); R = tBu, CB = OCH(CF(3))(2) (3), OPh (5), SPh (7)*, p-OC(6)H(4)(NO(2)) (9) (* indicates a rearranged Ttz ligand)]. The use of bidentate ligands resulted in structures [(Ttz(Ph,Me))Zn(CB) (CB = acac (12), OAc (14))] in which the coordination geometries are five, and intermediate between four and five, respectively. Interestingly, three forms of (Ttz(Ph,Me))Zn(p-OC(6)H(4)(NO(2))) (10) were analyzed crystallographically including a Zn coordinated water molecule in 10(H(2)O), a coordination polymer in 10(CP), and a p-nitrophenol molecule hydrogen bonded to a triazole ring in 10(Nit). Ttz ligands are flexible since they are capable of providing κ(3) or κ(2) metal binding and intermolecular interactions with either a metal center or H through the four position nitrogen (e.g. in 10(CP) and HTtz(tBu,Me)·H(2)O, respectively). Preliminary kinetic studies on the protonolysis of LZnEt (L = Ttz(tBu,Me), Tp(tBu,Me)) with p-nitrophenol in toluene at 95 °C show that these reactions are zero order in acid and first order in the LZnEt.  相似文献   

2.
Summary Methyl methylphenylphosphinate (L) complexes with 3d metal perchlorates were synthesized by interaction of L and metal salt solutions in triethyl orthoformate (61 molar ratio) and characterized by means of spectral, magnetic and conductance studies. In most cases (Mn+ = Cr3+, Mn2+, Co2+, Ni2+, Cu2+ or Zn2+), complexes involving 41 L: metal ratios, similar to those obtained with bulky triorganophosphine oxides and neutral phosphonate or phosphate esters, were formed. These complexes contain exclusively terminal L groups and were characterized as monomeric of the types [CrL4(OClO3)2](ClO4), [ML4(OH2)](ClO4)2 (M = Mn or Ni), [ML4(OClO3)](ClO4) (M = Co or Zn) and [CuL4](ClO4)2. In contrast, Fe2+ and Fe3+ perchlorates formed, rather unexpectedly, complexes involving 21 L: Fe ratios. These compounds appear to be binuclear and of the type [(O3ClO)(H2O)2LFeL2FeL(OH2)2(OClO3)](ClO4)n (n=2 for Fe2+; n=4 for Fe3+), containing both terminal and bridging coordinated L ligands. The bridging L groups in the iron complexes seem to be exclusively coordinated through the P=O oxygen, which acts as a bridging group between two adjacent Fe2+ or Fe3+ions, rather than functioning as bidentate bridging O,O-ligands, with both the P=O and methoxy oxygens involved in coordination. Spectral evidence suggests that L is a weaker ligand than triorganophosphine oxides and a stronger ligand than neutral phosphonate and phosphate esters, as anticipated.  相似文献   

3.
Preparations of copper(I) and bismuth(III) complexes of hydrotris(4-ethyl-3-methyl-5-thioxo-1,2,4-triazolyl)borate (Tr(Et,Me)) are described. These complexes have been characterized by means of spectroscopy and microanalysis. Molecular structures of [Cu(Tr(Et,Me))](2) x 2.5CH(3)CN x 0.5H(2)O (3a) and [Bi(Tr(Et,Me))(2)]NO(3) x 2CHCl(3) (4a) have been determined by single-crystal X-ray diffraction. In the centrosymmetric dimeric copper(I) complex, Tr(Et,Me) acts in the k(3)S,S',H:kS' ' coordination mode. The metal is found in a distorted trigonal geometry as the ligand exhibits an "S(3)-inverted" conformation at the boron center so that a weak [B-H.Cu] agostic interaction renders the overall coordination of the (3 + 1) type. On the other hand, in the bismuth complex, Tr(Et,Me) presents the k(3)S,S',S' ' coordination mode and the "S(3)-normal" conformation. The metal is found in a regular octahedral geometry bound by six thioxo groups of two ligands. Species distributions in solution have been studied using electrospray ionization mass spectrometry upon dissolution of 3a and 4a crystals in acetonitrile. Monomeric and polynuclear copper(I) complexes with different M:L ratios are present in solution, while for 4a only the monomeric species is present.  相似文献   

4.
Treatment of a solid mixture of KBH4 with six equivalents of 3,5-diisopropylpyrazole (iPr2pzH) at 180 °C afforded KTpiPr2(iPr2PzH)3 in 53% yield. KBpiPr2 was synthesized in 56% yield by treatment of a 1:2 M ratio of KBH4 and iPr2PzH in refluxing dimethylacetamide. Treatment of MI2 (M = Ca, Sr, Ba) with two equivalents of KBp or KBpiPr2 in tetrahydrofuran afforded MBp2(THF)2 (M = Ca, 64%, M = Sr, 81%), BaBp2(THF)4 (32%), and M(BpiPr2)2(THF)2 (M = Ca, 63%; M = Sr, 61%, M = Ba, 48%) as colorless crystalline solids upon workup. These complexes were characterized by spectral and analytical techniques and by X-ray crystal structure determinations of all complexes except KBpiPr2. KTpiPr2(iPr2PzH)3 contains one κ3-N,N,N-TpiPr2 ligand and three κ1-iPr2pzH ligands, with overall distorted octahedral geometry about the K ion. The iPr2PzH nitrogen-hydrogen bonds are engaged in intramolecular hydrogen bonding to the 2-nitrogen atoms of the TpiPr2 ligand. The solid state structures of MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 contain κ3-N,N,H Bp and BpiPr2 ligands, which form through metal-nitrogen bond formation to the 2-nitrogen atoms of the pyrazolyl fragments and metal-hydrogen bond formation to one boron-bound hydrogen atom per Bp ligand. SrBp2(THF)2has the shortest metal-hydrogen interactions among the series. A combination of preparative sublimations, solid state decomposition temperatures, and thermogravimetric analysis demonstrated that MBp2(THF)2, BaBp2(THF)4, and M(BpiPr2)2(THF)2 undergo solid state decomposition at moderate temperatures.  相似文献   

5.
A mixed ligand complex of l-phenyl-3-methyl-4-trifluoroacetyl pyrazolone-5 (HPMTFP) and dimethyl sulfoxide (DMSO) with neodymium having molecular formula Nd(PMTFP)3 · 2DMSO has been synthesized. Its crystal and molecular structures have been determined by a four-circle X-ray diffractometer. The complex crystallizes in monoclinic with space group P 21/n. a = 21.897 (4), b = 23.339 (4), c = 8.958 (2)Å, β = 96.61 (3)°, Z = 4. The Nd atom is coordinated by eight oxygen atoms, which takes a distorted delta dodecahedron arrangement around the central Nd atom. The average bond length of Nd—O is 2.45 Å. The IR spectra have been discussed as well.  相似文献   

6.
This review covers crystallographic and structural data for almost fifty polymeric FeM complexes (M = transition Cu, Ag, Au, Mo, W, Mn, Co, Ni and Pt and lanthanide elements Sm, Er and Yb) where iron is involved in polymeric chains. The complexes are for the most part yellow or black, but there are complexes of brown, orange, red, purple, blue and green colour. The complexes crystallized in the monoclinic (by far prevails), triclinic, tetragonal, orthorhombic, trigonal, hexagonal and rhombohedral crystal classes. The iron atoms are found in oxidation states 0, +2 and +3, of which +3 by far prevails. The inner coordination spheres about the Fe(0) atom are tetrahedral (FeC4) or sandwiched (FeC10), Fe(II) atoms are six-coordinated, and Fe(III) are six or even seven-coordinated. The inner coordination about M atoms range from four- through six- to eight-coordinated. The shortest Fe-Fe, Fe-M (transition) and Fe-M (lanthanide) and M-M separations are: 8.08 Å, 3.033 Å for Fe-Cu, 3.010 Å for Fe-Yb and 2.505 Å for Mo-Mo.  相似文献   

7.
A mixed ligand neodymium complex containing 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazol-5-one (HPMTFP) and 1-phenyl-3-methyl-pyrazol-5-one (PMP), with molecular formula Nd (PMTFP)3·PMP·H2O was synthesized. Its crystal and molecular structure has been determined by single crystal X-ray diffraction method. The complex crystallizes in monoclinic system with space group C52-P21/n. There are four formula units in a cell of dimensions a = 12.837(3), b = 23.763(5), c = 16.810(4) Å, β = 109.58(2)°. The structure has been refined by full-matrix least-squares techniques to a final R value of 0.0487 and Rw value of 0.432. The neodymium atom is coordinated to eight oxygen atoms with the average Nd—O bond length 2.439Å. Its thermostability, and mass spectrum have been discussed.  相似文献   

8.
我们合成了[M(bpy)~3]X~p(X为SO^2^-~4、Cl^-或ClO^-~4, P=1或2。M为V、Cr、Mn、Fe、Co, Ni、Cu、Zn)。测定了其电子光谱, 指认了各谱带的归属, 并预计了未能显示的谱带的位置。求得了八面体场的参数: D~q, Racah参数B、电子云扩展系数β、M的单电子的旋-轨偶合参数ξ~a~d和配合物的旋--轨偶合参数λ, 指出了与[M(bpy)~3]^2^+的电子光谱相关的电子跃迁。  相似文献   

9.
Summary R2PNCS (R=Me or Ph) obtained in CH2Cl2 solution from R2PCl and AgSCN, is unstable in the absence of solvent, yet yields stable complexes of stoichiometry [MLCln] (L=R2PNCS) when reactedin situ with metal chlorides MCln (M=Mn or Co; n=2, V or Fe, n=3). Physico-chemical data suggest that the > PNCS moiety retains its identity in the complexes, providing P and S as coordinating sites, and coordination is accompanied by delocalization of metal electrons through an additional overlap between empty P(3d) and metal (3d) orbitals. Probable geometries for the complexes have been ascertained from magnetic susceptibility and diffuse reflectance spectral studies.  相似文献   

10.
Ultrafast pump-probe spectroscopic studies have been performed on (C 5Me 5) 2U[- N=C(Ph)(CH 2Ph)] 2 and (C 5Me 5) 2Th[- N=C(Ph)(CH 2Ph)] 2 including, for the uranium complex, the first direct measurement of dynamics of electronic deactivation within a 5f-electron manifold. Evidence has been found for strong coupling between the electronic ground state and the f-electron manifold which dominates the dynamics of the excited states of the bis(ketimide) uranium complex. These also demonstrate strong singlet-f manifold coupling, which assists in the deactivation of the photoexcited state of the uranium complex, and provide information on intersystem crossing and internal conversion processes in both complexes.  相似文献   

11.
Summary Complex formation of transition metal(II) cyanates and thiocyanates (Z) with 1-phenyl-I,2,4-triazole (1-PhTr) is described. An assignment of the i.r. spectra of free and coordinated 1-phenyl-1,2,4-triazole is given. The products are mononuclear M(1-PhTr)4Z1 and polvnuclear M(1-PhTr)2Z2 compounds. The former occur ascis andtrans isomers; the latter include bridging (thio)cvanates. A tetrahedral coordination is found for zinc complexes.Part IX, D. W. Engelfriet, G. C. Verschoor and W. den Brinker, to be published.  相似文献   

12.
A new family of 14‐electron, four‐coordinate iron(II) complexes of the general formula [TptBu,MeFeX] (TptBu,Me is the sterically hindered hydrotris(3‐tert‐butyl‐5‐methyl‐pyrazolyl) borate ligand and X=Cl ( 1 ), Br, I) were synthesized by salt metathesis of FeX2 with TptBu,MeK. The related fluoride complex was prepared by reaction of 1 with AgBF4. Chloride 1 proved to be a good precursor for ligand substitution reactions, generating a series of four‐coordinate iron(II) complexes with carbon, oxygen, and sulphur ligands. All of these complexes were fully characterized by conventional spectroscopic methods and most were characterized by single‐crystal X‐ray crystallographic analysis. Magnetic measurements for all complexes agreed with a high‐spin (d6, S=2) electronic configuration. The halide series enabled the estimation of the covalent radius of iron in these complexes as 1.24 Å.  相似文献   

13.
The activation of tris(dimethylamino)borane towards reaction with a chiral methimazole by N-methylimidazole has been used to prepare the first example of a chiral tris(methimazolyl)borate ligand. Coordination of this neutral ligand to Ru(II) has been achieved by reaction with [(p-cymene)RuCl(2)](2) to provide a single diastereomer complex in which the chirality of the methimazolyl substituents dictate the chirality of the bicyclo[3.3.3]cage formed by the ligand on coordination to the metal. The alternative approach to chiral tris(methimazolyl)borate ligands involving the introduction of a chiral group onto the boron atom has been explored by replacing N-methylimidazole in the above reaction by chiral oxazolines as activating bases in reaction with simple methimazole. However, although the B(NMe(2))(3) is activated to reaction with methimazole by these oxazolines, an intramolecular oxazoline ring-opening by a coordinated methimazolyl sulfur occurs and prevents the successful synthesis of these ligands.  相似文献   

14.
The synthesis of rhodium(I) and iridium(I) complexes of the bis(diisopropylamino)carbene is described for the first time. The formamidinium chloride and the free bis(diisopropylamino)carbene (L) were used as consecutive precursor compounds to form the metal complexes. Spectroscopic and, for LRh(cod)Cl, crystallographic data are presented for the complexes LRh(cod)Cl and LIr(cod)Cl (L=bis(diisopropylamino)carbene). The ligand properties of the acyclic bis(diisopropylamino)carbene are compared with imidazolin-2-ylidenes and imidazolidin-2-ylidenes as ligands in related rhodium(I) carbonyl complexes. Bis(diisopropylamino)carbene is the most basic known carbene ligand to date.  相似文献   

15.
The synthesis of the new complexes of 1-phenylacetyl-4-phenyl-3-thiosemicarbazide (H2papts) and 1-phenoxyacetyl-4-phenyl-3-thiosemicarbazide (H2Pxapts); [Ru(HL)2(H2O)2], [Rh(HL)3], [Ag(H2L)(H2O)2](NO3), trans-[UO2(HL)(bipy)(AcO)(H2O)2] (H2L = H2papts, H2pxapts; bipy = 2,2'-bipyridyl), [Ag(H2papts)(bipy)]+ and [Pd-(Hpapts)(bipy)]+ is described. Characterization of these complexes by IR, electronic and 1H-NMR spectra, conductometric titrations and thermal analysis is included. The complexes [Ru(HL)2(H2O)2] were found to be efficient catalysts for the oxidation of primary alcohols to aldehydes and acids, secondary alcohols to ketones and aryl halides to aldehydes and acids in the presence of NaIO4 as co-oxidant.  相似文献   

16.
Substituted phosphines of the type Ph2PCH(R)PPh2 and their PtII complexes [PtX2{Ph2PCH(R)PPh2}] (R = Me, Ph or SiMe3; X = halide) were prepared. Treatment of [PtCl2(NCBut)2] with Ph2PCH(SiMe3)-PPh2 gave [PtCl2(Ph2PCH2PPh2)], while treatment with Ph2PCH(Ph)PPh2 gave [Pt{Ph2PCH(Ph)PPh2}2]Cl2. Reaction of p-MeC6H4C≡CLi or PhC≡CLi with [PtX2{Ph2PCH(Me)PPh2}] gave [Pt(C≡CC6H4Me-p)2-{Ph2PCH(Me)PPh2}] (X = I) and [Pt{Ph2PC(Me)PPh2}2](X = Cl),while reaction of p-MeC6H4C≡CLi with [Pt{Ph2PCH(Ph)PPh2}2]Cl2 gave [Pt{Ph2PC(Ph)PPh2}2]. The platinum complexes [PtMe2(dpmMe)] or [Pt(CH2)4(dpmMe)] fail to undergo ring-opening on treatment with one equivalent of dpmMe [dpmMe = Ph2PCH(Me)PPh2]. Treatment of [Ir(CO)Cl(PPh3)2] with two equivalents of dpmMe gave [Ir(CO)(dpmMe)2]Cl. The PF6 salt was also prepared. Treatment of [Ir(CO)(dpmMe)2]Cl with [Cu(C≡CPh)2], [AgCl(PPh3)] or [AuCl(PPh3)] failed to give heterobimetallic complexes. Attempts to prepare the dinuclear rhodium complex [Rh2(CO)3(μ-Cl)(dpmMe)2]BPh4 using a procedure similar to that employed for an analogous dpm (dpm = Ph2PCH2PPh2) complex were unsuccessful. Instead, the mononuclear complex [Rh(CO)(dpmMe)2]BPh4 was obtained. The corresponding chloride and PF6 salts were also prepared. Attempts to prepare [Rh(CO)(dpmMe)2]Cl in CHCl3 gave [RhHCl(dpmMe)2]Cl. Recrystallization of [Rh(CO)(dpmMe)2]BPh4 from CHCl3/EtOH gave [RhO2(dpmMe)2]BPh4. Treatment of [Rh(CO)2Cl2]2 with one equivalent of dpmMe per Rh atom gave two compounds, [Rh(CO)(dpmMe)2]Cl and a dinuclear complex that undergoes exchange at room temperature between two formulae: [Rh2(CO)2(μ-Cl)(μ-CO)(dpmMe)2]Cl and [Rh2(CO)2-(μ-Cl)(dpmMe)2]Cl. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The synthesis and resolution of (+)578- and (-)578-(η-C6H6)RuCl(Me) [Ph2PNHCH(Me) (Ph)] is described. Insertion of anhydrous SnCl2 into the Ru-Cl bond yielded (+)578- and (-)578-(η-C6H6)RuSnCl3(Me)-[Ph2PNHCH(Me) (Ph)], the stereoselectivity of which is dependent on the reaction conditions. All the new complexes were found to be configurationally stable in a wide variety of solvents up to 60°C./  相似文献   

18.
The sodium salt of the bis(2-mercapto-1-methylimidazolyl)borate anion [Bm(Me)](-) and those of the new bis(2-mercapto-1-alkylimidazolyl)borates [Bm(R)](-) (R = Bz, Bu(t), p-Tol) have been readily obtained from NaBH(4) and the appropriate 2-mercapto-1-alkylimidazoles. To contrast the binding preferences of the group 12 metals in a sulfur-rich environment, the four complete series of homoleptic complexes M[Bm(R)](2) (M = Zn, Cd, Hg), including the first bis(mercaptoimidazolyl)borate derivatives of cadmium and mercury, have been prepared. X-ray diffraction studies of Cd[Bm(Me)](2) and M[Bm(tBu)](2) (M = Zn, Cd, Hg) show the presence of distorted tetrahedral [MS(4)] central cores supplemented by two weak vicinal M.H-B bonds, interactions which appear to be a common feature in the coordination chemistry of Bm(R) ligands. In the case of zinc, it has been found that only in the presence of bulky ligands, as in Zn[Bm(tBu)](2), may an unexpected expansion in the coordination number from four to six be induced. This observation suggests the viability of octahedral intermediates in the processes whereby certain zinc enzymes transfer or exchange metal ions.  相似文献   

19.
Structurally similar but charge-differentiated platinum complexes have been prepared using the bidentate phosphine ligands [Ph(2)B(CH(2)PPh(2))(2)], ([Ph(2)BP(2)], [1]), Ph(2)Si(CH(2)PPh(2))(2), (Ph(2)SiP(2), 2), and H(2)C(CH(2)PPh(2))(2), (dppp, 3). The relative electronic impact of each ligand with respect to a coordinated metal center's electron-richness has been examined using comparative molybdenum and platinum model carbonyl and alkyl complexes. Complexes supported by anionic [1] are shown to be more electron-rich than those supported by 2 and 3. A study of the temperature and THF dependence of the rate of THF self-exchange between neutral, formally zwitterionic [Ph(2)BP(2)]Pt(Me)(THF) (13) and its cationic relative [(Ph(2)SiP(2))Pt(Me)(THF)][B(C(6)F(5))(4)] (14) demonstrates that different exchange mechanisms are operative for the two systems. Whereas cationic 14 displays THF-dependent, associative THF exchange in benzene, the mechanism of THF exchange for neutral 13 appears to be a THF independent, ligand-assisted process involving an anchimeric, eta(3)-binding mode of the [Ph(2)BP(2)] ligand. The methyl solvento species 13, 14, and [(dppp)Pt(Me)(THF)][B(C(6)F(5))(4)] (15), each undergo a C-H bond activation reaction with benzene that generates their corresponding phenyl solvento complexes [Ph(2)BP(2)]Pt(Ph)(THF) (16), [(Ph(2)SiP(2))Pt(Ph)(THF)][B(C(6)F(5))(4)] (17), and [(dppp)Pt(Ph)(THF)][B(C(6)F(5))(4)] (18). Examination of the kinetics of each C-H bond activation process shows that neutral 13 reacts faster than both of the cations 14 and 15. The magnitude of the primary kinetic isotope effect measured for the neutral versus the cationic systems also differs markedly (k(C(6)H(6))/k(C(6)D(6)): 13 = 1.26; 14 = 6.52; 15 approximately 6). THF inhibits the rate of the thermolysis reaction in all three cases. Extended thermolysis of 17 and 18 results in an aryl coupling process that produces the dicationic, biphenyl-bridged platinum dimers [[(Ph(2)SiP(2))Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (19) and [[(dppp)Pt](2)(mu-eta(3):eta(3)-biphenyl)][B(C(6)F(5))(4)](2) (20). Extended thermolysis of neutral [Ph(2)BP(2)]Pt(Ph)(THF) (16) results primarily in a disproportionation into the complex molecular salt [[Ph(2)BP(2)]PtPh(2)](-)[[Ph(2)BP(2)]Pt(THF)(2)](+). The bulky phosphine adducts [Ph(2)BP(2)]Pt(Me)[P(C(6)F(5))(3)] (25) and [(Ph(2)SiP(2))Pt(Me)[P(C(6)F(5))(3)]][B(C(6)F(5))(4)] (29) also undergo thermolysis in benzene to produce their respective phenyl complexes, but at a much slower rate than for 13-15. Inspection of the methane byproducts from thermolysis of 13, 14, 15, 25, and 29 in benzene-d(6) shows only CH(4) and CH(3)D. Whereas CH(3)D is the dominant byproduct for 14, 15, 25, and 29, CH(4) is the dominant byproduct for 13. Solution NMR data obtained for 13, its (13)C-labeled derivative [Ph(2)BP(2)]Pt((13)CH(3))(THF) (13-(13)()CH(3)()), and its deuterium-labeled derivative [Ph(2)B(CH(2)P(C(6)D(5))(2))(2)]Pt(Me)(THF) (13-d(20)()), establish that reversible [Ph(2)BP(2)]-metalation processes are operative in benzene solution. Comparison of the rate of first-order decay of 13 versus the decay of d(20)-labeled 13-d(20)() in benzene-d(6) affords k(13)()/k(13-d20)() approximately 3. The NMR data obtained for 13, 13-(13)()CH(3)(), and 13-d(20)() suggest that ligand metalation processes involve both the diphenylborate and the arylphosphine positions of the [Ph(2)BP(2)] auxiliary. The former type leads to a moderately stable and spectroscopically detectable platinum(IV) intermediate. All of these data provide a mechanistic outline of the benzene solution chemistries for the zwitterionic and the cationic systems that highlights their key similarities and differences.  相似文献   

20.
Tran BL  Carrano CJ 《Inorganic chemistry》2007,46(13):5429-5438
A series of monooxo-Mo(IV,V) and dioxo-Mo(VI) complexes of the "soft" tripodal ligand, sodium tris(mercaptoimidazolyl)borate (NaTm(Me)), have been synthesized as potential oxygen atom transfer (OAT) models for sulfite oxidase. Complexes have been characterized by X-ray crystallography, cyclic voltammetry, and EPR, where appropriate. Oxygen atom transfer kinetics of Tm(Me)MoO(2)Cl, both stoichiometric and catalytic, have been studied by a combination of UV-vis and (31)P NMR spectroscopies under a variety of conditions. OAT rates are consistent with previously established relationships between redox potential/reactivity and mechanistic studies. The analysis of these complexes as potential structural and functional analogues of relevance to molybdoenzymes is further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号