首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of a nonionic surfactant at a silica/room-temperature ionic liquid interface has been characterized on the basis of analytical data obtained through a combination of surface force measurements, in situ soft-contact atomic force microscope (AFM) images, and quartz crystal microbalance with dissipation monitoring (QCM-D) data. The surfactant employed in this study is a kind of phytosterol ethoxylate (BPS-20), and the ionic liquid selected here is aprotic 1-ethyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)imide (EmimTFSI). This ionic liquid spontaneously forms solvation layers on silica, being composed of an Emim(+) cation layer and EmimTFSI ion pair layers. The addition of BPS-20 disrupts these solvation layers and suggests a surfactant layer adsorbed at the interface. This is the first report demonstrating the adsorption of nonionic surfactants at the solid/aprotic ionic liquid interface.  相似文献   

2.
The electrochemistry of the [PtCl(6)](2-)-[PtCl(4)](2-)-Pt redox system on a glassy carbon (GC) electrode in a room-temperature ionic liquid (RTIL) [i.e., N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEMEBF(4))] has been examined. The two-step four-electron reduction of [PtCl(6)](2-) to Pt, i.e., reduction of [PtCl(6)](2-) to [PtCl(4)](2-) and further reduction of [PtCl(4)](2-) to Pt, occurs separately in this RTIL in contrast to the one-step four-electron reduction of [PtCl(6)](2-) to Pt in aqueous media. The cathodic and anodic peaks corresponding to the [PtCl(6)](2-)/[PtCl(4)](2-) redox couple were observed at ca. -1.1 and 0.6 V vs a Pt wire quasi-reference electrode, respectively, while those observed at -2.8 and -0.5 V were found to correspond to the [PtCl(4)](2-)/Pt redox couple. The disproportionation reaction of the two-electron reduction product of [PtCl(6)](2-) (i.e., [PtCl(4)](2-)) to [PtCl(6)](2-) and Pt metal was also found to occur significantly. The electrodeposition of Pt nanoparticles could be carried out on a GC electrode in DEMEBF(4) containing [PtCl(6)](2-) by holding the potential at -3.5 or -2.0 V. At -3.5 V, the four-electron reduction of [PtCl(6)](2-) to Pt can take place, while at -2.0 V the two-electron reduction of [PtCl(6)](2-) to [PtCl(4)](2-) occurs. The results obtained demonstrate that the electrodeposition of Pt at -3.5 V may occur via a series of reductions of [PtCl(6)](2-) to [PtCl(4)](2-) and further [PtCl(4)](2-) to Pt and at -2.0 V via a disproportionation reaction of [PtCl(4)](2-) to [PtCl(6)](2-) and Pt. Furthermore, the deposition potential of Pt nanoparticles was found to largely influence their size and morphology as well as the relative ratio of Pt(110) and Pt(100) crystalline orientation domains. The sizes of the Pt nanoparticles prepared by holding the electrode potential at -2.0 and -3.5 V are almost the same, in the range of ca. 1-2 nm. These small nanoparticles are "grown" to form bigger particles with different morphologies: In the case of the deposition at -2.0 V, the GC electrode surface is totally, relatively compactly covered with Pt particles of relatively uniform size of ca. 10-50 nm. On the other hand, in the case of the electrodeposition at -3.5 V, small particles of ca. 50-100 nm and the grown-up particles of ca. 100-200 nm cover the GC surface irregularly and coarsely. Interestingly, the Pt nanoparticles prepared by holding the potential at -2.0 and -3.5 V are relatively enriched in Pt(100) and Pt(110) facets, respectively.  相似文献   

3.
Anisotropic thermally reversible ionogels of sodium laurate (SL) were prepared in the first discovered room-temperature ionic liquid (RTIL), ethylammonium nitrate (EAN). Polarized optical microscope images indicate that the gels are birefringent, illuminating the presence of anisotropic structures. Small-angle X-ray scattering results reveal that SL and lauric acid (LA) molecules are arranged to form lamellar structures, but no SL crystallites were confirmed by the X-ray diffraction measurements. With an increase of the SL concentration, the interlayer distance decreases. Rheological measurements indicate that the anisotropic ionogels are highly viscoelastic and the storage modulus (G') increases with an increase of the SL concentration in EAN. Electrochemical measurements indicate that the anisotropic ionogels may have potential applications in electrochemical fields. The intermolecular hydrogen bond as well as the solvatophobic interaction of SL and LA formed by a chemical reaction, CH(3)(CH(2))(10)COONa + CH(3)CH(2)NH(3)NO(3) --> CH(3)CH(2)NH(2) upward arrow + NaNO(3) downward arrow + CH(3)(CH(2))(10)COOH, can play a role in the formation of three-dimensional networks having lamellar structures which are responsible for the anisotropic ionogels. The formation of anisotropic ionogels by surfactants in RTILs could be a new phenomenon, but this is not a very classic case of organogels.  相似文献   

4.
5.
A novel ultrathin dual-layer film, which contained both bonded and mobile phases in ionic liquids (ILs) layer, was fabricated successfully on a silicon substrate modified by a self-assembled monolayer (SAM). The formation and surface properties of the films were analyzed using ellipsometer, water contact angle meter, attenuated total reflectance Fourier transform infrared spectroscopy, multi-functional X-ray photoelectron spectroscopy, and atomic force microscope. Meanwhile, the adhesive and nanotribological behaviors of the films were evaluated by a homemade colloidal probe. A ball-on-plate tribometer was used to evaluate the microtribological performances of the films. Compared with the single-layer ILs film deposited directly on the silicon surface, the as-prepared dual-layer film shows the improved tribological properties, which is attributed to the special chemical structure and outstanding physical properties of the dual-layer film, i.e., the strong adhesion between bonded phase of ILs and silicon substrate via the chemical bonding with SAM, the interlinked hydrogen bonds among the molecules, and two-phase structure composed of steady bonded phase with load-carrying capacity and flowable mobile phase with self-replenishment property.  相似文献   

6.
Vibrational energy relaxation (VER) dynamics of a diatomic solute in ionic liquid 1-ethyl-3-methylimidazolium hexafluorophosphate (EMI(+)PF(6) (-)) are studied via equilibrium and nonequilibrium molecular dynamics simulations. The time scale for VER is found to decrease markedly with the increasing solute dipole moment, consonant with many previous studies in polar solvents. A detailed analysis of nonequilibrium results shows that for a dipolar solute, dissipation of an excess solute vibrational energy occurs almost exclusively via the Lennard-Jones interactions between the solute and solvent, while an oscillatory energy exchange between the two is mainly controlled by their electrostatic interactions. Regardless of the anharmonicity of the solute vibrational potential, VER becomes accelerated as the initial vibrational energy increases. This is attributed primarily to the enhancement in variations of the solvent force on the solute bond, induced by large-amplitude solute vibrations. One interesting finding is that if a time variable scaled with the initial excitation energy is employed, dissipation dynamics of the excess vibrational energy of the dipolar solute tend to show a universal behavior irrespective of its initial vibrational state. Comparison with water and acetonitrile shows that overall characteristics of VER in EMI(+)PF(6) (-) are similar to those in acetonitrile, while relaxation in water is much faster than the two. It is also found that the Landau-Teller theory predictions for VER time scale obtained via equilibrium simulations of the solvent force autocorrelation function are in reasonable agreement with the nonequilibrium results.  相似文献   

7.
Highly reversible, safe lithium secondary batteries that use imidazolium-cation-based room-temperature ionic liquid as an electrolyte and lithium metal as an anode material were realized by the molecular design. To achieve higher reduction stability, an electron-donating substituent was introduced to promote charge delocalization in the imidazolium cation of room-temperature ionic liquids.  相似文献   

8.
Investigation on alkali fluoride-HF system has been initiated in the 19th century. The technique is currently utilized in fluorine-chemical industry. But, the problem is that this system readily releases hazardous HF. Although organic base, e.g., amine, with HF, which is mainly applied to fluorination treatment for organic compound, reduces the HF release, the solution still requires careful handling because of limited amount of free HF. Recently family of fluorohydrogenate room-temperature ionic liquid, XF(HF)2.3, that consists of heterocyclic ammonium cation (X+), F(HF)2, and F(HF)3, has gotten a lot of attentions due to the interesting physicochemical properties such as negligible vapor pressure (<7.5 × 10−3 Torr (=1 Pa) at 298 K), high conductivity, and low corrosiveness. This novel solvent will greatly contribute to development of fluorine chemistry. In this article, fundamental techniques and physicochemical data on the fluorohydrogenate RTIL are summarized, and molecular science in the dialkylimidazolium fluorohydrogenates leading to the understanding of the unusual properties is reviewed based on recent experimental and theoretical considerations.  相似文献   

9.
The transport properties and solvation dynamics of model 1,3-dialkylimidazolium chloride melt at 425 K is studied using molecular-dynamics simulations. Long trajectories of a large system have been generated and quantities such as the self-diffusion coefficient of ions, shear viscosity, and ionic conductivity have been calculated. Interestingly, the diffusion of the heavier cation is found to be faster than the anion, in agreement with experiment. The interaction model is found to predict a higher viscosity and lower electrical conductivity compared to experimental estimates. Analysis of the latter calculations points to correlated ion motions in this melt. The solvation time correlation function for dipolar and ionic probes studied using equilibrium simulations exhibits three time components, which include an ultrafast (subpicosecond) part as well as one with a time constant of around 150 ps. The ultrafast solvent relaxation is ascribed to the rattling of anions in their cage, while the slow component could be related to the reorientation of the cations as well as to ion diffusion.  相似文献   

10.
Ogura T  Takao K  Sasaki K  Arai T  Ikeda Y 《Inorganic chemistry》2011,50(21):10525-10527
Reduction of U(VI)O(2)Cl(4)(2-) in a mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and its chloride at E°' = -0.996 V vs Fc/Fc(+) and 298 K affords U(V)O(2)Cl(4)(3-), which is kinetically stable and exhibits typical character of U(V) in the UV-vis-NIR absorption spectrum.  相似文献   

11.
An unusual ionic conduction phenomenon related to the phase transition of a novel phosphonium-cation-based room-temperature ionic liquid (RTIL) is reported; we found that in the phase change upon cooling, a clear increase in ionic conductivity was seen as the temperature was lowered, which differs from widely known conventional RTILs; clearly, our finding of abnormality of the correlation between temperature change and ionic conduction is the first observation in the electrolyte field.  相似文献   

12.
In this study, we employed the room-temperature ionic liquid [bmim][PF6] as both ion-pair agent and an extractant in the phase-transfer liquid-phase microextraction (PTLPME) of aqueous dyes. In the PTLPME method, a dye solution was added to the extraction solution, comprising a small amount of [bmim][PF6] in a relatively large amount of CH2Cl2, which serves as the disperser solvent to an extraction solution. Following extraction, CH2Cl2 was evaporated from the extractant, resulting in the extracted dyes being concentrated in a small volume of the ionic liquid phase to increase the enrichment factor. The enrichment factors of for the dye Methylene Blue, Neutral Red, and Methyl Red were approximately 500, 550 and 400, respectively; their detection limits were 0.014, 0.43, and 0.02 μg L−1, respectively, with relative standard deviations of 4.72%, 4.20%, and 6.10%, respectively.  相似文献   

13.
The cyclic voltammetry responses and the redox switching dynamics of poly(3,4-ethylenedioxythiophene) (PEDOT) in a room-temperature ionic liquid, 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)amide (EMImTf2N), were investigated. The shape of the cyclic voltammograms showed two anodic and two cathodic peaks. These peak currents varied linearly with the scan rate indicating a thin-layer behaviour. No memory effects were observed during the cyclic voltammetry experiments in this ionic liquid. On the other hand, the redox switching dynamics of PEDOT were studied by means of potential step experiments. The analysis of chronocoulograms in term of RC-circuits indicated that the time dependence of the charge transferred during the potential step showed two time constants. These results were consistent with the postulated structure or morphology of the PEDOT film which contained two types of coexisting zones: a compact and an open structures.  相似文献   

14.
Efficient technologies/processes for CO(2) capture are greatly desired, and ionic liquids are recognized as promising materials for this purpose. However, the mechanisms for selectively capturing CO(2) by ionic liquids are unclear. In this study, the interactions between CO(2) and 1-n-amino-alkyl-3-methyl-imidazolium tetrafluoroborate, an amino imidazolium ionic liquid (AIIL), in its CO(2) capturing process, are elucidated with both quantum chemistry and molecular dynamics approaches on the molecular level. The effects of the straight aminoalkyl chain length in imidazolium-based cations on CO(2) capture are explored, and thereby the factors governing CO(2) capture for this ionic liquid family, e.g., ionic liquid structure, charge distribution, intermolecular interactions, thermodynamic properties and absorption kinetics, are analyzed. Molecular dynamics simulations are used to study the diffusion of the involved compounds and liquid structures of the CO(2)-AIIL systems. The results show that the amino-alkyl chain length plays an important role in governing the absorption properties of AIILs, including the free energies of absorption, equilibrium constants, desorption temperature, absorption rate constants, diffusion coefficients, and organization of CO(2) around cations and anions. This study provides useful information about rational design of ionic liquids for efficient CO(2) capture.  相似文献   

15.
The nature of the interactions between a representative room-temperature ionic liquid, namely 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIM][BF(4)]) and a common organic solvent, acetonitrile (CH(3)CN) has been investigated by means of Brillouin light scattering, over the whole concentration range and in the temperature range from -20 to 45 degrees C. Negative deviations from the ideal behavior of both molar volumes and adiabatic compressibility have been observed. This result has been interpreted within the framework of a well-established theoretical model, namely a nonadditive hard-sphere mixture. Despite that similar findings were rationalized in terms of enhanced interactions between molecules, a more detailed analysis of excess thermodynamic functions indicates that they are mainly due to excluded volume effects and that the differences in local intermolecular interactions act as higher order contributions: we have found that this can be a general feature of liquid mixtures. On this basis we present a reconsideration for excess thermodynamic data and for their role in providing direct information on intermolecular interactions.  相似文献   

16.
The stability of a variety of lyotropic liquid crystals formed by a number of polyoxyethylene nonionic surfactants in the room-temperature ionic liquid ethylammonium nitrate (EAN) is surveyed and reported. The pattern of self-assembly behaviour and mesophase formation is strikingly similar to that observed in water, even including the existence of a lower consolute boundary or cloud point. The only quantitative difference from water is that longer alkyl chains are necessary to drive the formation of liquid crystalline mesophases in EAN, suggesting that a rich pattern of "solvophobic" self-assembly should exist in this solvent.  相似文献   

17.
The separation of selected 1-alkyl- and 1-aryl-3-methylimidazolium-based room temperature ionic liquid cations has been performed using reversed-phase high-performance liquid chromatography with electrospray ionization mass detection. The RP-HPLC method development started with the selection of a column taking into account especially the resolution of low molecular congeners of the selected group. Mobile phase composition was optimized for peak resolution, sensitivity and high reproducibility of retention values. The results of the method development were applied to the determination of exemplary ionic liquid species present in the medium used in cytotoxicity studies.  相似文献   

18.
A novel acidic ionic liquid immobilized on silica has been synthesized by hydrolyzing tetraethyl orthosilicate (TEOS) and the acidic ionic liquid derived from (3-aminopropyl) trimethoxysilane. The catalytic activities were evaluated in the acetalization and biodiesel synthesis. The results showed that the solid acid was a very efficient catalyst for the traditional acid-catalyzed reactions with the yield over 99.0%. A novel solid acid combined both the high activities inherent to the acidic ionic liquid and the feasibility of separation of the solid catalysts. High acidity, enhanced catalytic activities and improved stability were the key properties of the novel solid acid.  相似文献   

19.
20.
The Sr(II)-crown ether complexes formed in a room-temperature ionic liquid (RTIL), 1-methyl-3-pentylimidazolium bis[(trifluoromethyl)sulfonyl]amide, have been studied by X-ray absorption fine structure measurements at the Sr K-edge. When a Sr(NO(3))(2)-crown ether complex is directly dissolved in a water-saturated RTIL, both nitrate ligands and the crown ether coordinate the Sr, as observed in a conventional two-phase water-octanol system. When the cationic Sr-crown ether complex is created in a two-phase water-RTIL system, however, only cationic Sr-crown ether complexes are observed in the RTIL phase. This difference in the coordination complexes arises from differences in the mechanism of cation extraction between the RTIL and conventional molecular organic solvents, a finding with important implications for synthesis, catalysis, and ion separations using two-phase water-RTIL systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号