首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mesoporous titanium dioxide (MTiO2) photocatalysts co‐doped with Fe and H3PW12O40 were synthesized by template method using tetrabutyl titanate (Ti(OC4H9)4), Fe(NO3)k39H2Oand H3PW12O40 as precursors and Pluronic P123 as template. The as‐prepared photocatalyst was characterized by N2 adsorption‐desorption measurements, X‐ray diffraction (XRD), scanning electron microscopy (SEM) and UV‐vis adsorption spectroscopy, and the photocatalytic activities of the prepared samples under UV and visible light were estimated by measuring the degradation rate of methyl blue (MB) (50 mg/L) in an aqueous solution. The characterizations indicated that the photocatalysts possessed a homogeneous pore diameter of ca. 10 nm with high surface area of ca. 150 m2/g. The results of MB photodecomposition showed that co‐doped mesoporous TiO2 exhibited higher photocatalytic activities than un‐doped, single‐doped mesoporous TiO2 under UV and visible light irradiation. It was shown that the co‐doped MTiO2 could be activated by visible light and could thus be used as an effective catalyst in photo‐oxidation reactions. The synergistic effect of Fe and H3PW12O40 co‐doping played an important role in improving the photocatalytic activity.  相似文献   

2.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO_4/Bi_2O_3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-可见漫反射(UV-Vis DRS)等方法对样品进行表征。可见光下,BiVO_4/Bi_2O_3复合物的光催化降解罗丹明B性能及光电流响应均优于纯BiVO_4。这是由于BiVO_4/Bi_2O_3复合材料形成了异质结构,有效抑制了光生电子与空穴的复合效率。  相似文献   

3.
采用水热法合成具有四角星形貌的钒酸铋,再将钒酸铋浸渍在碱溶液里二次水热,制备出BiVO4/Bi2O3催化剂。采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM),紫外-射(UV-Vis DRS)等方法征。可见光下,BiVO4/Bi2O3复合物的光催化降解丹明B性能及光电优于纯BiVO4。BiVO4/Bi2O3复合材料形成了异质结构,有效抑制了光电子与空穴的复合效率。  相似文献   

4.
Monoclinic BiVO4 hollow nanospheres were successfully prepared via template-free method using citric acid (C6H8O7) as chelating agent and characterized by X-ray diffraction patterns, transmission electron microscope, UV-Vis DRS, and TG-DTA technique. C6H8O7 played an important role in the formation of hollow spheres. Morphology observations revealed that when appropriate amount ofC6H8O7 was introduced, the cavity with the diameter of 40 nm was obtained in BiVO4 nanospheres. UV-Vis diffuse reflectance spectra indicated that the samples had absorption in both UV and visible light region. The photocatalytic activities were evaluated by the degradation of methylene blue under Xe lamp irradiation. Hollow spheres endow BiVO4samples with greatly improved photocatalytic activity. A possible formation mechanism of hollow spheres was proposed.  相似文献   

5.
Poly(amidoamine) dendrimer (Generation-4) encapsulated platinum nanoparticles (PtNP-PAMAM) were prepared and used to fabricate nanocomposites with Keggin-type phosphotungstic acid (PW12O403−) using a layer by layer electrostatic assembly technique. Indium tin oxide (ITO) electrodes, which were first modified with a monolayer of 3-aminopropyl triethoxysilane (3-APTES), were used as substrates for assembly of the PW12O403− monolayer. Nanocomposites were then fabricated by depositing PtNP-PAMAM on the monolayer of PW12O403−. The amount of PtNP-PAMAM deposited was controlled by using different concentrations of PtNP-PAMAM diluted in 0.1 M H2SO4 solution. The hydrogen evolution reaction (HER) was used to test electrocatalytic activities of these nanocomposite modified electrodes. Modification of ITO|3-APTES with PW12O403− |PtNP-PAMAM showed significantly higher electrocatalytic activities toward the HER than electrodes modified with either PW12O403− or PtNP-PAMAM alone. The electrocatalytic activities were found to depend on the composition of PtNP-PAMAM and PW12O403− on electrode surfaces, which was attributed to an interaction between these species. Heat treatment of ITO|3-APTES|PW12O403− |PtNP-PAMAM electrodes at 200 °C produced significantly higher electrocatalytic activities, which supported the suggestion of an interaction. Presented at the 4th Baltic conference on Electrochemistry, Griefswald, March 13.−16., 2005.  相似文献   

6.
Bismuth vanadate (BiVO4) as a metal oxidation semiconductor has stimulated extensive attention in the photocatalytic water splitting field. However, the poor transport ability and easy recombination of charge carriers limit photocatalytic water oxidation activity of pure BiVO4. Herein, the photocatalytic activity of BiVO4 is enhanced via adjusting its morphology and combination co-catalyst. First, the Cu-BiVO4 was synthesized by copper doping to control the growth of {110} facet of BiVO4, which is regarded for the separation of photo-generated charge carriers. Then the CoOx in-situ generated from K6[SiCoII(H2O)W11O39] ⋅ 16H2O was photo-deposited on Cu-BiVO4 surface as co-catalyst to speed up reaction kinetics. Cu-BiVO4@CoOx hybrid catalyst shows highest photocatalytic activity and best stability among all the prepared catalysts. Oxygen evolution is about 34.6 μmol in pH 4 acetic acid buffer under 420 nm LED irradiation, which is nearly 20 times higher than that of pure BiVO4. Apparent quantum efficiency (AQE) in 1 h and O2 yield are 1.83% and 23.1%, respectively. O2 evolution amount nearly maintains the original value even after 5 cycles.  相似文献   

7.
经由溶剂热反应、光辅助还原过程制备Bi/Bi VO_4Bi_4V_2O_(11)纳米复合光催化材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、N_2吸附-脱附等温线和光致发光(PL)等手段对该复合物进行表征。实验结果表明当金属Bi与BiVO_4Bi_4V_2O_(11)的质量比值为0.8,可见光照射30 min时,Bi/BiVO_4Bi_4V_2O_(11)复合催化剂对罗丹明B(RhB)的降解率可达95.6%。此外,Bi/BiVO_4Bi_4V_2O_(11)对四环素(TC)的降解也表现出增强的光催化性能。Bi/BiVO_4Bi_4V_2O_(11)复合材料提升的光催化性能可能归因于金属Bi的表面等离子体共振(SPR)效应、拓宽的可见光吸收范围和增大的比表面积。此外,提出了复合光催化剂可能的光催化机理。  相似文献   

8.
冯长根  尚海茹  刘霞 《催化学报》2014,35(2):168-174
以非离子表面活性剂P123为结构导向剂,采用溶胶-凝胶与溶解热相结合方法,制备了两类介孔材料H3PW12O40/TiO2和H4SiW12O40/TiO2,并对其进行了表征.?X射线粉末衍射和拉曼光谱分析表明,所制催化剂为锐钛矿晶型,体系中H3PW12O40和H4SiW12O40的Keggin结构经400?℃焙烧后仍保持完整.?H3PW12O40/TiO2和H4SiW12O40/TiO2的平均粒径分别为15.49和7.75?nm.?N2吸附-脱附和扫描电镜结果表明,P123的加入使催化剂的粒径减小,比表面积和孔体积明显增大,其中H3PW12O40/TiO2和H4SiW12O40/TiO2的比表面积分别高达252.2和250.0?m2/g.?紫外漫反射吸收光谱表明,与纯TiO2相比,复合催化剂的吸收光谱发生了明显的红移,且吸收强度明显增大.?催化剂对DNT降解实验表明,在最佳操作条件下降解率可高达95%.?  相似文献   

9.
A poly(methacrylamide-co-methylmethacrylate) (abbreviated PMAA-MMA) polymer support was studied for supporting a heteropolyacid (tungstophosphoric acid, H3PW12O40) with its surface positively charged in the polymerization step. PMAA-MMA supports could be obtained in a porous form by eliminating template reagent molecules (benzylmalonic acid) combined with properly selected monomer (methacrylamide). The amount of amine groups in PMAA-MMA directly determined the amount of H3PW12O40 impregnated, because the amine groups induced a positive charge on the PMAA-MMA surface. Finally, H3PW12O40/PMAA-MMA showed better acid catalytic activities than unsupported H3PW12O40 in alkylation of 1,3,5-trimethylbenzene with cyclohexene, which confirmed that PMAA-MMA supported H3PW12O40 effectively.  相似文献   

10.
Porous peanut-like TiO2/BiVO4 composite nanostructures were synthesized via a template-free hydrothermal process with bismuth nitrate, ammonium metavanadate and anatase TiO2 as raw materials. The crystal structures, morphologies, and optical properties of the as-prepared samples were characterized by X-ray powder diffraction, transmission electron microscope, scanning electron microscopy, X-ray photoelectron spectroscopy and UV–visible absorption spectra. Simulated sun-light induced photocatalytic degradation of Rhodamine B by porous peanut-like TiO2/BiVO4 nanostructures in the absence and presence of H2O2 has been investigated, and the results show these porous composite nanostructures with higher photocatalytic activity than pure BiVO4 and anatase TiO2. When TiO2/BiVO4 heterostructures were used as the photocatalysts under simulated sun-light irradiation, BiVO4 could act as a sensitizer to absorb the visible light. Meanwhile, coupling different band-gap semiconductors of TiO2 and BiVO4, the compound facilitate separation of the photogenerated carriers under the internal field induced by the different electronic band structures of semiconductors.  相似文献   

11.
张爱平  张进治 《无机化学学报》2009,25(11):2040-2047
采用水热合成法, 制备出Eu、Gd和Er掺杂的BiVO4复合光催化剂,并采用X射线衍射、X射线光电子谱、扫描电子显微镜和紫外-可见漫反射光谱技术对其进行分析表征。通过可见光下降解水溶液中甲基橙分子来考察其光催化性能,结果显示掺杂的复合光催化剂活性都强于纯的BiVO4,对掺杂复合光催化剂的催化活性增强机理进行了讨论和描述。  相似文献   

12.
Heteropoly acids Cs x H3 − x PW12O40 · nH2O with different cesium content are synthesized as nanostructured compositions. Their actual composition and specific surface are determined, microstructure studied and proton conductivity measured. Composite electrocatalytic systems based on platinized cesium salt of phosphorus-tungsten heteropolyacid Cs2.3H0.7PW12O40 · nH2O are prepared with admixture of Vulcan XC-72 carbon black. Mixed electronic-ionic conduction of the composite systems with different carbon black content is studied. Platinum-based nanostructured electrocatalyst based on the Cs2.3H0.7PW12O40 · nH2O-materials as support is synthesized and studied. The possible effective using of the studied nanocomposite as electrode for low-temperature hydrogen-air fuel cells is demonstrated. Electrochemical studies of catalytic properties of the Pt-Cs2.3H0.7PW12O40 · nH2O-C-electrodes in hydrogen and air are carried out by example of the prepared materials with different carbon black content.  相似文献   

13.
Recent progress on the catalytic decomposition of lignin model compounds to aromatics was reported in this review. Cesium-exchanged heteropolyacid catalysts (CsxH3.0?xPW12O40), palladium catalysts supported on cesium-exchanged heteropolyacid (Pd/CsxH3.0?xPW12O40), and palladium catalysts supported on various activated carbon aerogels (ACAs) (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0?xPW12O40/ACA, and Pd/Cs2.5H0.5PW12O40/ACA-SO3H) were prepared, and they were employed for the decomposition of C–O bond in lignin to aromatics. Phenethyl phenyl ether, benzyl phenyl ether, and 4-phenoxyphenol were used as dimeric lignin model compounds representing for β-O-4, α-O-4, and 4-O-5 bonds in lignin, respectively. It was observed that CsxH3.0?xPW12O40 and Pd/CsxH3.0?xPW12O40 were highly active for the decomposition of phenethyl phenyl ether and benzyl phenyl ether to aromatics. However, these catalysts showed very low catalytic performance in the decomposition of 4-phenoxyphenol. Palladium catalysts supported on various ACAs (Pd/ACA-SO3H (X), Pd/XCs2.5H0.5PW12O40/ACA, Pd/CsxH3.0?xPW12O40/ACA, and Pd/XCs2.5H0.5PW12O40/ACA-SO3H) were efficient for the decomposition of 4-phenoxyphenol to aromatics. Acidity of the catalysts played a key role in determining the catalytic performance in the decomposition of 4-phenoxyphenol to aromatics.  相似文献   

14.
In this paper, H3PW12O40 (PW12)-functionalized graphene nanosheets (PW12-GNs) were prepared using a green and facile method via a UV-irradiated photoreduction process, in which PW12 was directly deposited on the GNs as a reductant and also as an anionic stabilizer. The as-prepared water-dispersive PW12-GN composite is used as matrices for electrodeposition of the interesting orchidlike Pt nanoclusters in situ. The PW12-GN composite was characterized by transmission electron microscopy (TEM) and cyclic voltammetry (CV). It was shown that the electrochemical properties of PW12 were maintained in PW12-GNs. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) confirmed that Pt had been deposited on the PW12-GN composite surface. Field emission scanning electron microscopy (FE-SEM) showed that the interesting orchidlike Pt nanoparticles were uniformly immobilized on the surface of the {PW12-GN} composite film. Cyclic voltammetry and chronoamperometric curves were used to study the electrocatalytic activity of Pt/{PW12-GN} regarding methanol oxidation in 0.5 M H2SO4. It is worthy of note that the Pt/{PW12-GN} composite film-modified electrode presents a high catalytic activity (j?=?353 mA mg?1) and better tolerance of CO towards methanol electrooxidation.  相似文献   

15.
1-Butyl-3-methylimidazolium dodecatungstophosphate catalyst ([bmim]3PW12O40) with high water tolerance was prepared from 1-butyl-3-methylimidazolium bromide ([bmim]Br) and phosphotungstic acid (H3PW12O40). The catalyst was characterized by means of Fourier transform infrared spectroscopy, thermogravimetry-differential scanning calorimetry, n-BuNH2 potentiometric titration, elemental analysis and so on. Its catalytic activity for esterification of ethanol and acetic acid to ethyl acetate was measured. The results show that there were three crystal-water molecules in the [bmim]3PW12O40 catalyst, and it preserved the primary Keggin structure and acid strength of H3PW12O40. The acid amount of [bmim]3PW12O40 catalyst was less than that of H3PW12O40. The [bmim]3PW12O40 catalyst exhibited higher catalytic activity and reusability in the esterification of ethanol and acetic acid to ethyl acetate. __________ Translated from Chinese Journal of Catalysis, 2008, 29(7) (in Chinese)  相似文献   

16.
Er-doped BiVO4 composite photocatalyst was hydrothermal synthesized and characterizedby X-ray powder diffraction, scanning electron microscopy, energy-dispersive X-ray Spectroscopy, X-ray photoelectron spectroscopy, and UV-Vis diffuse reflectance spectra techniques. The activity of the catalyst was determined by oxidative decomposition of methyl orange in aqueous solution under visible-light irradiation. X-ray photoelectron spectroscopy and energy-dispersive X-ray Spectroscopy analysis revealed that the doped Er existed in the form of Er2O3. It also showed that the Er doping can enhance the visible-light absorption abilities of catalysts and their visible-light-driven photocatalytic activities in comparison with those of pure BiVO4.  相似文献   

17.
Novel magnetic hybrid nanomaterials 1 (LaFeO3.Fe3O4@SiO2-NH2/PW12) were synthesized by supporting phosphotungstic acid (H3PW12O40; PW12) on LaFeO3.Fe3O4 nanomaterials through sono-assisted method. The synthesized nanomaterials were fully characterized by using FT-IR, XRD, UV–vis, BET-BJH, VSM, SEM, and TEM analyses. FT-IR, XRD, and UV–vis confirmed successful synthesis of nanomaterials. The SEM and TEM images revealed spherical morphology with core-shell structure for hybrid nanomaterials 1 . VSM results confirmed the magnetic property of hybrid nanomaterials 1 and suggested it as easily recyclable photocatalyst for removal of organic dyes from aqueous solution. The photocatalytic activity of hybrid nanomaterials 1 has been studied over the degradation of methylene blue (MB) and methyl orange (MO) solution under UV–vis light irradiation. Importantly the hybrid nanomaterials 1 showed outstanding degradation efficiency for MB solution in comparison with bare LaFeO3.Fe3O4 and PW12. The photocatalytic activity was enhanced mainly due to the high efficiency in separation of electron–hole pairs induced by the remarkable synergistic effects of LaFeO3.Fe3O4 and PW12 semiconductors. After the photocatalytic reaction, the nanocomposite can be easily separated from the reaction solution and reused several times without loss of its photocatalytic activity. Trapping experiments indicated that hole (hVB+) and OH radicals were the main reactive species for dye degradation in the present photocatalytic system. On the basis of the experimental results and estimated band gaps, the mechanism for the enhanced photocatalytic activity was proposed.  相似文献   

18.
The photocatalytic activity composite films incorporating the Keggin-type polyoxometalates (POM) K6CoW12O40·16H2O and K3PW12O40·nH2O (MW12 (M = P, Co)) and [Cu(II)(1,8-dimethyl-1, 3, 6, 8, 10, 13-hexaazacycloteradecane)]2+(L) have been prepared by the layer-by-layer (LbL) self-assembly method. The experimental results show that the deposition process is linear and highly reproducible from layer to layer. Atomic force microscopy (AFM) images of the L/MW12 composite films indicate that the film surface is relatively uniform and smooth. In addition, the films show high photocatalytic activity to the degradation of organic dye model (methyl orange (MO)), attributed to the formation of an O → W charge-transfer excited state at W–O–W bridge bond, resulting in generating highly reactive holes and electrons; The photocatalytic efficiency of the films have little change after several times of photocatalytic cycle, indicating that the composite films are stable, reused and recovered.  相似文献   

19.
纳米钒酸铋的微波快速合成及光催化性能研究   总被引:2,自引:0,他引:2  
采用微波辅助加热法以NaVO3溶液和Bi(NO3)3·5H2O的硝酸溶液为反应物,在10~40 min内合成了纳米钒酸铋粉末。利用XRD、FTIR、TEM、UV-Vis等手段研究了反应时间对产物结构及形貌的影响。经测定反应10 min时,得到纯的四方相BiVO4,随着反应时间的延长,逐渐出现单斜相的衍射峰,当反应40 min时,获得纯的单斜相BiVO4。同时XRD和IR结果证明了相转变的过程。TEM分析表明不同的反应时间条件下样品呈现不同的形貌。不同反应时间下获得样品的光催化性能的结果表明,微波反应时间对BiVO4结构的转变及光催化性能的改变起到了重要的作用。  相似文献   

20.
葛明  谭勉勉  崔广华 《物理化学学报》2015,30(11):2107-2112
结合回流法和原位沉淀法成功制备磷酸银/矾酸铋(Ag3PO4/BiVO4)复合光催化剂. 通过X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、能量色散X射线光谱(EDS)、紫外-可见漫反射光谱(UV-Vis DRS)及光致发光(PL)光谱对制备样品进行表征. XRD和FESEM结果表明成功制备Ag3PO4/BiVO4复合光催化剂. 采用节能发光二极管灯(LED)作为可见光光源, 在低消耗光催化系统中评价制备样品可见光催化降解染料的活性.当Ag3PO4和BiVO4的组成摩尔比为1:3 时, 复合Ag3PO4/BiVO4光催化剂呈现出高于纯相Ag3PO4的催化活性,可减少Ag3PO4的使用量. Ag3PO4/BiVO4复合光催化剂在中性溶液中表现出高活性, 同时证实其对阳离子染料的光催化降解效果强于阴离子染料. 在Ag3PO4/BiVO4系统中, 超氧自由基和空穴是主要的活性物种. 经过三次循环利用, Ag3PO4/BiVO4复合催化剂的可见光催化活性表现出不同程度的降低, 归因于降解过程中产生金属银.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号