首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
We calculate the net-baryon rapidity distribution in Au+Au collisions at the Relativistic Heavy Ion Collider (RHIC) in the framework of the parton cascade model (PCM). Parton rescattering and fragmentation leads to a substantial increase in the net-baryon density at midrapidity over the density produced by initial primary parton-parton scatterings. The PCM is able to describe the measured net-baryon density at RHIC.  相似文献   

2.
In the framework of the quark–gluon string model we calculate the inclusive spectra of secondaries produced in d+Au collisions at intermediate (CERN SPS) and at much higher (RHIC) energies. The results of numerical calculations at intermediate energies are in reasonable agreement with the data. At RHIC energies numerically large inelastic screening corrections (percolation effects) should be accounted for in the calculations. We extract these effects from the existing experimental data of RHIC on minimum-bias and central d+Au collisions. The predictions for p+Au interactions at LHC energy are also given.  相似文献   

3.
We analyze elliptic flow from SIS to RHIC energies systematically in a realistic dynamical cascade model. We compare our results with the recent data from STAR and PHOBOS collaborations on elliptic flow of charged particles at midrapidity in Au+ Au collisions at RHIC. In the analysis of elliptic flow at RHIC energy, we find a good fitting with data at 1.5 times a scaling factor to our model, which characterizes that the model is required to have extra pressure generated from the subsequent parton scattering after the initial minijet production. In energy dependence of elliptic flow, we notice re-hardening nature at RHIC energies. Both these two observations would probably imply the possible formation of quark-gluon plasma.  相似文献   

4.
《Physical review letters》2004,92(11):112301
Transverse mass and rapidity distributions for charged pions, charged kaons, protons, and antiprotons are reported for square root of [sNN]=200 GeV pp and Au+Au collisions at Relativistic Heary Ion Collider (RHIC). Chemical and kinetic equilibrium model fits to our data reveal strong radial flow and long duration from chemical to kinetic freeze-out in central Au+Au collisions. The chemical freeze-out temperature appears to be independent of initial conditions at RHIC energies.  相似文献   

5.
This paper describes the measurement of collective flow for charged particles in Au+Au collisions at sqrt[s(NN)]=130 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider (RHIC). The measured azimuthal hit anisotropy is presented over a wide range of pseudorapidity (-5.0相似文献   

6.
We present Φ meson production in Cu+Cu and Au+Au collisions measured by the STAR experiment at RHIC.The hadronic decay mode Φ→K~+K~- is used in the analysis.The yields for Φ meson in Cu+Cu and Au+Au collisions at a given beam energy are scaled by the number of participant.The N_(part) normalized Φ meson yields in heavy ion collisions over those from p+p collisions are larger than 1 and increase with collision energy.These results suggest that the source of enhancement of strange hadrons is related to the formation of a dense medium in high energy heavy ion collisions and can not be only due to canonical suppression of their production in smaller systems.We also present STAR results on the Φ meson elliptic flow υ_2 from 2~(1/SNN)=200 GeV Cu+Cu at RHIC.The elliptic flow in Cu+Cu system that has the similar relative magnitude and qualitative features as that in Au+Au system.The observations imply the hot and dense matter with partonic collectivity has been formed in heavy ion collisions at RHIC.However,eccentrality normalized υ_2,υ_2/(n_qε_(part)) is lower for Cu+Cu than for Au+Au collisions at 200 GeV.So this might indicate thermalization has not been reached in 200 GeV Cu+Cu collisions.  相似文献   

7.
Charmed hadrons are interesting observables in heavy ion collisions. They are becoming more accessible to experimental scrutiny at RHIC energies due to the increased production cross-section of charm with the larger centre-of-mass energy available at RHIC compared to SPS. One source of interest in charm production is due to the fact that gluon fusion dominates the charm production cross-section at high energy. Hence, a measurement of charm hadrons is directly sensitive to the gluon distributions of the colliding particles. In addition, any measurement of production at RHIC, and more importantly any observed suppression, must be compared to the overall production of pairs. A systematic study of charmed hadrons in all collision systems available at RHIC is therefore an invaluable experimental tool in the characterization of the matter produced at RHIC. In particular, d + Au collisions are a necessary step for the comparison of any possible modification of charm production in Au + Au collisions. We present preliminary results on D meson production from d + Au collisions in STAR at = 200 . Arrival of the final proofs: 26 July 2005 PACS: 13.20.Fc, 13.25.Ft, 25.75.-q, 24.85. + p  相似文献   

8.
Anisotropic transverse flow is studied in Pb+Pb and Au+Au collisions at SPS and RHIC energies. The centrality and transverse momentum dependence at midrapidity of the elliptic flow coefficient v2 is calculated in the hydrodynamic and low density limits. Hydrodynamics is found to agree well with the RHIC data for semicentral collisions up to transverse momenta of 1–1.5 GeV/c, but it considerably overestimates the measured elliptic flow at SPS energies. The low density limit LDL is inconsistent with the measured magnitude of v2 at RHIC energies and with the shape of its pt-dependence at both RHIC and SPS energies. The success of the hydrodynamic model points to very rapid thermalization in Au+Au collisions at RHIC and provides a serious challenge for kinetic approaches based on classical scattering of on-shell particles.  相似文献   

9.
Transverse momentum spectra of charged hadrons with p(T)<8 GeV/c and neutral pions with p(T)<10 GeV/c have been measured at midrapidity by the PHENIX experiment at BNL RHIC in d+Au collisions at sqrt[s(NN)]=200 GeV. The measured yields are compared to those in p+p collisions at the same sqrt[s(NN)] scaled up by the number of underlying nucleon-nucleon collisions in d+Au. The yield ratio does not show the suppression observed in central Au+Au collisions at RHIC. Instead, there is a small enhancement in the yield of high momentum particles.  相似文献   

10.
Two-pion correlations in square root[s(NN)] = 130 GeV Au+Au collisions at RHIC have been measured over a broad range of pair transverse momentum k(T) by the PHENIX experiment at RHIC. The k(T) dependent transverse radii are similar to results from heavy-ion collisions at square root[s(NN)] = 4.1, 4.9, and 17.3 GeV, whereas the longitudinal radius increases monotonically with beam energy. The ratio of the outwards to sidewards transverse radii (R(out)/R(side)) is consistent with unity and independent of k(T).  相似文献   

11.
Charged particle pseudorapidity distributions have been measured in Au+ Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of hard scattering processes at RHIC energies is discussed. Keywords. Relativistic heavy-ion collisions; charged hadron production; pseudorapidity distributions; centrality dependence; hard scattering processes.  相似文献   

12.
13.
《Physical review letters》2007,98(19):192301
The STAR collaboration at the BNL Relativistic Heavy-Ion Collider (RHIC) reports measurements of the inclusive yield of nonphotonic electrons, which arise dominantly from semileptonic decays of heavy flavor mesons, over a broad range of transverse momenta (1.2相似文献   

14.
We report results on the ratio of midrapidity antiproton-to-proton yields in Au+Au collisions at sqrt[s(NN)] = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of /y/<0.5 and 0.4相似文献   

15.
We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported.  相似文献   

16.
Ultra-relativistic heavy-ion collisions produced at RHIC differ significantly from a superposition of proton-proton collisions. Evidence of collective expansion has been gathered. The yield of high transverse momentum particles has been found to be lower in head-on Au?Au collisions than is expected by scaling p-p collisions. Di-jet processes, which are frequent in p-p collisions, are almost absent in head-on Au?Au collisions. The current results from RHIC indicate that Au?Au collisions at $\sqrt {S_{NN} } = 130$ GeV and $\sqrt {S_{NN} } = 200$ GeV yield an expanding system that is opaque to high momentum partons.  相似文献   

17.
It has long been believed that small colliding systems (p+Au, d+Au, 3He + Au) are can only be used to study the collective effects of cold nuclear matter. However, recent studies on the RHIC and LHC accelerators indicate there are flowlike collective effects characterized by the high multiplicity of charged particles produced in these collisions. Whether these effects result from the hydrodynamic expansion of a dense and hot thermalized medium or are caused by the initial state remains an open question. This work reports the results from measuring flow characteristics in d + Au and 3He + Au collisions at an energy of 200 GeV in the PHENIX experiment on the RHIC collider. Attempts to describe the results theoretically are discussed.  相似文献   

18.
By using the recent spatially dependent nuclear PDF set EPS09s, we investigated the centrality-dependent Cold Nuclear Matter (CNM) effects for neutral π, η mesons and inclusive jets at RHIC in d+Au collisions and at LHC in p+Pb collisions. The nuclear modification factors as functions of transverse momentum are plotted at different centralities bins respectively. At all fixed centralities, the nuclear modification factors show no significant suppressions, contrast to the strong suppressions observed for central Au+Au collisions. Our results are consistent with the PHENIX preliminary Data in minimum bias and central d+Au collisions. The LHC experimental Data also support our predictions for both single inclusive hadron and inclusive jets productions in central p+Pb collisions. And the centrality dependence of the nuclear suppressions for all the observations in our calculations are lower than the RHIC and LHC Data.  相似文献   

19.
20.
Important goals of BNL RHIC and CERN LHC experiments with ion beams include the creation and study of new forms of matter, such as the quark gluon plasma. Heavy quark production and attenuation provide unique tomographic probes of that matter. We predict the suppression pattern of open charm and beauty in Au+Au collisions at RHIC and LHC energies based on the DGLV formalism of radiative energy loss. A cancellation between effects due to the sqrt[s] energy dependence of the high p(T) slope and heavy quark energy loss is predicted to lead to surprising similarity of heavy quark suppression at RHIC and LHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号