首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(19)F isotropic chemical shifts for alkali, alkaline earth and rare earth of column 3 basic fluorides are measured and the corresponding isotropic chemical shieldings are calculated using the GIPAW method. When using the PBE exchange-correlation functional for the treatment of the cationic localized empty orbitals of Ca(2+), Sc(3+) (3d) and La(3+) (4f), a correction is needed to accurately calculate (19)F chemical shieldings. We show that the correlation between experimental isotropic chemical shifts and calculated isotropic chemical shieldings established for the studied compounds allows us to predict (19)F NMR spectra of crystalline compounds with a relatively good accuracy. In addition, we experimentally determine the quadrupolar parameters of (25)Mg in MgF(2) and calculate the electric field gradients of (25)Mg in MgF(2) and (139)La in LaF(3) using both PAW and LAPW methods. The orientation of the EFG components in the crystallographic frame, provided by DFT calculations, is analysed in terms of electron densities. It is shown that consideration of the quadrupolar charge deformation is essential for the analysis of slightly distorted environments or highly irregular polyhedra.  相似文献   

2.
The room temperature structure of Ba(5)Al(3)F(19) has been solved using electron microscopy and synchrotron powder diffraction data. One-dimensional (1D) (27)Al and ultrafast magic-angle-spinning (MAS) (19)F NMR spectra have been recorded and are in agreement with the proposed structural model for Ba(5)Al(3)F(19). The (19)F isotropic chemical shift and (27)Al quadrupolar parameters have been calculated using the CASTEP code from the experimental and density functional theory geometry-optimized structures. After optimization, the calculated NMR parameters of both the (19)F and (27)Al nuclei show improved consistency with the experimental values, demonstrating that the geometry optimization step is necessary to obtain more accurate and reliable structural data. This also enables a complete and unambiguous assignment of the (19)F MAS NMR spectrum of Ba(5)Al(3)F(19). Variable-temperature 1D MAS (19)F NMR experiments have been carried out, showing the occurrence of fluorine ion mobility. Complementary insights were obtained from both two-dimensional (2D) exchange and 2D double-quantum dipolar recoupling NMR experiments, and a detailed analysis of the anionic motion in Ba(5)Al(3)F(19) is proposed, including the distinction between reorientational processes and chemical exchange involving bond breaking and re-formation.  相似文献   

3.
Dynamic processes such as chemical exchange or rotations between inequivalent orientations can affect the magic-angle spinning (MAS) and the multiple-quantum (MQ) MAS NMR spectra of half-integer quadrupolar nuclei. The present paper discusses such dynamic multisite MAS and MQMAS effects and applies them to study the dynamic processes that occur in the double perovskite cryolite, Na3AlF6. Dynamic line shape simulations invoking a second-order broadening of the central transition and relying on the semiclassical Bloch-McConnell formalism for chemical exchange were performed for a variety of exchange models possessing different symmetries. Fitting experimental variable-temperature cryolite 23Na NMR data with this formalism revealed that the two inequivalent sodium sites in this mineral undergo an exchange characterized by a broad distribution of rates. To further assess this dynamic process a variety of 27Al and 19F MAS NMR studies were also undertaken; quantitative 27Al-19F dipolar coupling measurements then revealed a dynamic motion of the AlF6 octahedra that were qualitatively consistent with predictions stemming from molecular dynamic simulations on this double perovskite.  相似文献   

4.
High magnetic field and high spinning frequency one- and two-dimensional one-pulse MAS 19F NMR spectra of beta-ZrF4 and CeF4 were recorded and reconstructed allowing the accurate determination of the 19F chemical shift tensor parameters for the seven different crystallographic fluorine sites of each compound. The attributions of the NMR resonances are performed using the superposition model for 19F isotropic chemical shift calculation initially proposed by Bureau et al. (Bureau, B.; Silly, G.; Emery, J.; Buzaré, J.-Y. Chem. Phys. 1999, 249, 85-104). A satisfactory reliability is reached with a root-mean-square (rms) deviation between calculated and measured isotropic chemical shift values equal to 1.5 and 3.5 ppm for beta-ZrF4 and CeF4, respectively.  相似文献   

5.
New approaches to the characterization of resonances in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei are explored, on the basis of the acquisition of heteronuclear separate-local-field spectra on rotating solids. In their two-dimensional version, these experiments correlate for each chemical site a second-order quadrupolar MAS powder pattern with the dipolar MAS sideband pattern to nearby heteronuclei. As 3D NMR sequences, such 2D anisotropic correlation spectra become separated for inequivalent chemical sites along a third, isotropic dimension. Extending in such manner separate-local-field NMR approaches to quadrupoles facilitates the assignment of inequivalent resonances to specific structural environments, and provides new tools for the investigation of dynamics in solids. Details about these 2D and 3D NMR experiments are given, and their application is illustrated with 1H-23Na recoupling experiments on mononucleotides possessing multiple bound cations.  相似文献   

6.
The determination of the nature and structure of surface sites after chemical modification of large surface area oxides such as silica is a key point for many applications and challenging from a spectroscopic point of view. This has been, for instance, a long-standing problem for silica reacted with alkylaluminum compounds, a system typically studied as a model for a supported methylaluminoxane and aluminum cocatalyst. While (27)Al solid-state NMR spectroscopy would be a method of choice, it has been difficult to apply this technique because of large quadrupolar broadenings. Here, from a combined use of the highest stable field NMR instruments (17.6, 20.0, and 23.5 T) and ultrafast magic angle spinning (>60 kHz), high-quality spectra were obtained, allowing isotropic chemical shifts, quadrupolar couplings, and asymmetric parameters to be extracted. Combined with first-principles calculations, these NMR signatures were then assigned to actual structures of surface aluminum sites. For silica (here SBA-15) reacted with triethylaluminum, the surface sites are in fact mainly dinuclear Al species, grafted on the silica surface via either two terminal or two bridging siloxy ligands. Tetrahedral sites, resulting from the incorporation of Al inside the silica matrix, are also seen as minor species. No evidence for putative tri-coordinated Al atoms has been found.  相似文献   

7.
A novel hexasodium disphosphopentamolybdate hydrate, Na6[P2Mo5O23]x7H2O, has been identified using X-ray powder diffraction, 1H, 23Na, and 31P magic-angle spinning (MAS) NMR, and 23Na multiple-quantum (MQ) MAS NMR. Powder XRD reveals that the hydrate belongs to the triclinic spacegroup P1 with cell dimensions a = 10.090(3) A, b = 15.448(5) A, c = 8.460(4) A, alpha = 101.45(6) degrees, beta = 104.09(2) degrees, gamma = 90.71(5) degrees, and Z = 2. The number of water molecules of crystallization has been determined on the basis of a quantitative evaluation of the 1H MAS NMR spectrum, the crystallographic unit cell volume, and a hydrogen content analysis. The 23Na MQMAS NMR spectra of Na6[P2Mo5O23]x7H2O, obtained at three different magnetic fields, clearly resolve resonances from six different sodium sites and allow a determination of the second-order quadrupolar effect parameters and isotropic chemical shifts for the individual resonances. These data are used to determine the quadrupole coupling parameters (CQ and eta Q) from simulations of the complex line shapes of the central transitions, observed in 23Na MAS NMR spectra at the three magnetic fields. This analysis illustrates the advantages of combining MQMAS and MAS NMR at moderate and high magnetic fields for a precise determination of quadrupole coupling parameters and isotropic chemical shifts for multiple sodium sites in inorganic systems. 31P MAS NMR demonstrates the presence of two distinct P sites in the asymmetric unit of Na6[P2Mo5O23].7H2O while the 31P chemical shielding anisotropy parameters, determined for this hydrate and for Na6[P2Mo5O23]x13H2O, show that these two hydrates can easily be distinguished using 31P MAS NMR.  相似文献   

8.
A novel approach to the determination of structure and potential dynamics in the solid-state NMR spectroscopy of half-integer quadrupolar nuclei is proposed and demonstrated. The new experiment combines into a single three-dimensional sequence, 2D multiple-quantum magic-angle-spinning NMR and 2D exchange NMR protocols. The result separates for each inequivalent chemical site its spin-diffusion powder line shape to proximate homonuclei. A peculiar feature of the experiment is the asymmetry it displays in the individual 2D powder patterns, resulting from its encoding of isotropic shifts before the mixing period. The resulting spectra facilitate the interpretation of the structural and dynamic features for the individual sites; experimental applications of this new method to relative geometry determinations in 23Na-23Na spin pairs are presented, and the quantitative evaluation of the resulting data is briefly discussed.  相似文献   

9.
A series of mixed sodalite samples, Na(8)[Al(6)Si(6)O(24)]Br(x).(H(3)O(2))(2-x), with the unit cell stoichiometries varying in the 0 < x <2 region, was made by hydrothermal synthesis and subsequently transformed into Na(6+x)[Al(6)Si(6)O(24)]Br(x).(4H(2)O)(2-x) and Na(6+x)[Al(6)Si(6)O(24)]Br(x).circle(2-x) sodalites. Here, circle refers to an empty sodalite cage. The three series, referred hereafter to as the Br/basic, Br/hydro, and Br/dry series, were characterized by powder diffraction X-ray and by (23)Na, (27)Al, and (81)Br magic angle spinning (MAS) NMR and high-resolution triple quantum (TQ) MAS NMR spectroscopy. We determined that incorporation of Br(-) anions is 130 times more preferred than incorporation of H(3)O(2)(-) anions during the formation of sodalite cages, which permitted precise control of the halide content in the solid. Monotonic trends in chemical shifts were observed as a function of cage occupancy, reflecting continuous changes in structural parameters. A linear correlation between (81)Br chemical shift and lattice constant with a slope of -86 ppm/A was observed for all three series. Likewise, (23)Na chemical shifts for Na(+) cations in salt-bearing sodalite cages correlate linearly with the lattice constant. Both results indicate a universal dependence of the (23)Na and (81)Br chemical shifts on the Na-Br distance. The (27)Al chemical shifts of Br/basic and Br/hydro sodalites obey an established relation between delta(cs) and the average T-O-T bond angle of 0.72 ppm/degrees. Br/dry sodalites show two aluminum resonances, characterized by significantly different chemical shifts and quadrupolar interaction parameters. In that series, local symmetry distortions are evident from strong quadrupolar perturbations in the NMR spectra. P(Q) values for (27)Al vary between 0.8 MHz in Br/basic sodalites and 4.4 MHz in the Br/dry series caused by deviations from the tetrahedral symmetry of the salt-free sodalite cages. For (23)Na, P(Q) values of 0.8, 0.8, 2.0, and 5.7 MHz were found for sodium in bromo, basic, hydro, and dry cages, respectively. In addition, both (23)Na and (81)Br spectra offer some evidence that the Br(-) anions in the Br/dry sodalite are displaced from the center of the expanded sodalite cage. For all three series, the spectral deconvolution of the (23)Na NMR line shapes permits an accurate determination of the mixed sodalite stoichiometry.  相似文献   

10.
Multiple-quantum magic angle spinning (MQMAS) and satellite-transition magic angle spinning (STMAS) are two well-known techniques for obtaining high-resolution, or "isotropic", NMR spectra of quadrupolar nuclei. It has recently been shown that dynamics-driven modulation of the quadrupolar interaction on the microsecond timescale results in linewidths in isotropic STMAS spectra that are strongly broadened, while, in contrast, the isotropic MQMAS linewidths remain narrow. Here, we use this novel methodology in an 27Al (I = 5/2) NMR study of the calcined-dehydrated aluminophosphate AlPO-14 and two forms of as-synthesized AlPO-14, one prepared with isopropylamine (C3H7NH2) as the template molecule and one with piperidine (C5H10NH). For completeness, the 31P and 13C (both I = 1/2) MAS NMR spectra are also presented. A comparison of the 27Al MQMAS and STMAS NMR results show that, although calcined AlPO-14 appears to have a rigid framework structure, the extent of motion in the two as-synthesized forms is significant, with clear evidence for dynamics on the microsecond timescale in the immediate environments of all four Al sites in each material. Variable-temperature 27Al STMAS NMR studies of the two as-synthesized AlPO forms reveal the dynamics to be complex, with the motions of both the guest water molecules and organic template molecules shown to be contributing. The sensitivity of the STMAS NMR experiment to the presence of microsecond timescale dynamics is such that it seems likely that this methodology will prove useful in NMR studies of host-guest interactions in a wide variety of framework materials.  相似文献   

11.
12.
High-speed MAS (19)F NMR spectra are recorded and reconstructed for 10 compounds from BaF(2)-AlF(3) and CaF(2)-AlF(3) binary systems which leads to the determination of 77 isotropic (19)F chemical shifts in various environments. A first attribution of NMR lines is performed for 8 compounds using a superposition model as initially proposed by B. Bureau et al. The phenomenological parameters of this model are then refined to improve the NMR line assignment. A satisfactory reliability is reached with a root-mean-square (RMS) deviation between calculated and measured values equal to 6 ppm. The refined parameters are then successfully tested on alpha-BaCaAlF(7) whose structure was recently determined. Finally, the isotropic chemical shift ranges are defined for shared, unshared, and "free" fluorine atoms encountered in the investigated binary systems. So, the fluorine surroundings can be deduced from the NMR line positions in compounds whose structure is unknown. Such an approach can also be applied to fluoride glasses.  相似文献   

13.
The detection of all of the aluminum present in steamed zeolite H-Y catalysts by (27)Al MAS NMR at 14.4 T (600 MHz for (1)H) and 18.8T (800 MHz for (1)H) is reported. Further, it is shown that it is possible by (27)Al MAS and MQMAS NMR measurements to clearly identify four separate aluminum environments which are characteristic of these materials and to unambiguously assign their coordinations. Average chemical shift and quadrupolar coupling parameters are used to accurately simulate the (27)Al MAS NMR spectra at 9.4 T (400 MHz for (1)H), 14.4 T (600 MHz for (1)H) and 18.8 T (800 MHz for (1)H) in terms of these four aluminum environments. In addition, these average chemical shift and quadrupolar coupling parameters are used to calculate peak positions in the (27)Al MQMAS isotropic dimension that are in good agreement with the experimental data acquired at 9.4 and 18.8 T.  相似文献   

14.
We report novel symmetry-based pulse sequences for exciting double-quantum (2Q) coherences between the central transitions of half-integer spin quadrupolar nuclei in the NMR of rotating solids. Compared to previous 2Q-recoupling techniques, numerical simulations and 23Na and 27Al NMR experiments on Na2SO4 and the open-framework aluminophosphate AlPO-CJ19 verify that the new dipolar recoupling schemes display higher robustness to both radio-frequency field inhomogeneity and to spreads in resonance frequencies. These advances allowed for the first demonstration of 2Q-recoupling in an amorphous solid for revealing its intermediate-range structural features, in the context of mapping 27Al-27Al connectivities between the aluminium polyhedra (AlO4, AlO5 and AlO6) of a lanthanum aluminate glass (La0.18Al0.82O1.5).  相似文献   

15.
《Chemphyschem》2006,7(1):117-130
Ultra‐wideline 27Al NMR experiments are conducted on coordination compounds with 27Al nuclei possessing immense quadrupolar interactions that result from exceptionally nonspherical coordination environments. NMR spectra are acquired using a methodology involving frequency‐stepped, piecewise acquisition of NMR spectra with Hahn‐echo or quadrupolar Carr–Purcell Meiboom–Gill (QCPMG) pulse sequences, which is applicable to any half‐integer quadrupolar nucleus with extremely broad NMR powder patterns. Despite the large breadth of these central transition powder patterns, ranging from 250 to 700 kHz, the total experimental times are an order of magnitude less than previously reported experiments on analogous complexes with smaller quadrupolar interactions. The complexes examined feature three‐ or five‐coordinate aluminum sites: trismesitylaluminum (AlMes3), tris(bis(trimethylsilyl)amino)aluminum (Al(NTMS2)3), bis[dimethyl tetrahydrofurfuryloxide aluminum] ([Me2‐Al(μ‐OTHF)]2), and bis[diethyl tetrahydrofurfuryloxide aluminum] ([Et2‐Al(μ‐OTHF)]2). We report some of the largest 27Al quadrupolar coupling constants measured to date, with values of CQ(27Al) of 48.2(1), 36.3(1), 19.9(1), and 19.6(2) MHz for AlMes3 , Al(NTMS2)3 , [Me2‐Al(μ‐OTHF)]2 , and [Et2‐Al(μ‐OTHF)]2 , respectively. X‐ray crystallographic data and theoretical (Hartree–Fock and DFT) calculations of 27Al electric field gradient (EFG) tensors are utilized to examine the relationships between the quadrupolar interactions and molecular structure; in particular, the origin of the immense quadrupolar interaction in the three‐coordinate species is studied via analyses of molecular orbitals.  相似文献   

16.
Results of the first solid-state 131Xe NMR study of xenon-containing compounds are presented. The two NMR-active isotopes of xenon, 129Xe (I=1/2) and 131Xe (I=3/2), are exploited to characterize the xenon magnetic shielding and quadrupolar interactions for two sodium perxenate salts, Na4XeO6.xH2O (x=0, 2), at an applied magnetic field strength of 11.75 T. Solid-state 129/131Xe NMR line shapes indicate that the local xenon environment in anhydrous Na4XeO6 adopts octahedral symmetry, but upon hydration, the XeO6(4-) anion becomes noticeably distorted from octahedral symmetry. For stationary, anhydrous samples of Na4XeO6, the heteronuclear 129/131Xe-23Na dipolar interaction is the principal contributor to the breadth of the 129/131Xe NMR lines. For stationary and slow magic-angle-spinning samples of Na4XeO(6).2H2O, the anisotropic xenon shielding interaction dominates the 129Xe NMR line shape, whereas the 131Xe NMR line shape is completely dominated by the nuclear quadrupolar interaction. The xenon shielding tensor is approximately axially symmetric, with a skew of -0.7+/-0.3, an isotropic xenon chemical shift of -725.6+/-1.0 ppm, and a span of 95+/-5 ppm. The 131Xe quadrupolar coupling constant, 10.8+/-0.5 MHz, is large for a nucleus at a site of approximate Oh symmetry, and the quadrupolar asymmetry parameter indicates a lack of axial symmetry. This study demonstrates the extreme sensitivity of the 131Xe nuclear quadrupolar interaction to changes in the local xenon environment.  相似文献   

17.
Aluminium carbide, Al4C3, was characterised by 13C and 27Al solid‐state NMR spectroscopy. The 13C NMR spectra display two resonances with an intensity ratio of 1:2, which is in agreement with the reported crystal structure. The 27Al NMR spectra of Al4C3 under both static and MAS conditions were deconvoluted into two spectral components, belonging to the two aluminium species Al1 and Al2 in the crystal structure of Al4C3. The spectral fit allowed for determination of the relatively large quadrupolar coupling constants (χ ≈? 16 MHz) of both 27Al species. One aluminium species displayed a tendency of having a χ of slightly smaller magnitude compared to the other. By carrying out DFT calculations of the EFG tensor at the 27Al sites using the Wien2k software, we could tentatively assign the smaller χ site to be the crystallographic Al1 species. Also, the isotropic chemical shift for the carbon‐coordinated aluminium in Al4C3 could be determined, being in the range of 111 to 120 ppm. This is somewhat larger than those shift values observed for 27Al in nitrogen coordination.  相似文献   

18.
The local structure of Na-Al-P-O-F glasses, prepared by a novel sol-gel route, was extensively investigated by advanced solid-state NMR techniques. 27Al{19F} rotational echo double resonance (REDOR) results indicate that the F incorporated into aluminophosphate glass is preferentially bonded to octahedral Al units and results in a significant increase in the concentration of six-coordinated aluminum. The extent of Al-F and Al-O-P connectivities are quantified consistently by analyzing 27Al{31P} and 27Al{19F} REDOR NMR data. Two distinct types of fluorine species were identified and characterized by various 19F{27Al}, 19F{23Na}, and 19F{31P} double resonance experiments, which were able to support peak assignments to bridging (Al-F-Al, -140 ppm) and terminal (Al-F, -170 ppm) units. On the basis of the detailed quantitative dipole-dipole coupling information obtained, a comprehensive structural model for these glasses is presented, detailing the structural speciation as a function of composition.  相似文献   

19.
We present in this paper the structure resolution of a fluorinated inorganic-organic compound--Zn(3)Al(2)F(12)·[HAmTAZ](6)--by SMARTER crystallography, i.e. by combining powder X-ray diffraction crystallography, NMR crystallography and chemical modelling of crystal (structure optimization and NMR parameter calculations). Such an approach is of particular interest for this class of fluorinated inorganic-organic compound materials since all the atoms have NMR accessible isotopes ((1)H, (13)C, (15)N, (19)F, (27)Al, (67)Zn). In Zn(3)Al(2)F(12)·[HAmTAZ](6), (27)Al and high-field (19)F and (67)Zn NMR give access to the inorganic framework while (1)H, (13)C and (15)N NMR yield insights into the organic linkers. From these NMR experiments, parts of the integrant unit are determined and used as input data for the search of a structural model from the powder diffraction data. The optimization of the atomic positions and the calculations of NMR parameters ((27)Al and (67)Zn quadrupolar parameters and (19)F, (1)H, (13)C and (15)N isotropic chemical shifts) are then performed using a density functional theory (DFT) based code. The good agreement between experimental and DFT-calculated NMR parameters validates the proposed optimized structure. The example of Zn(3)Al(2)F(12)·[HAmTAZ](6) shows that structural models can be obtained in fluorinated hybrids by SMARTER crystallography on a polycrystalline powder with an accuracy similar to those obtained from single-crystal X-ray diffraction data.  相似文献   

20.
13C, 14N, 15N, 17O, and 35Cl NMR parameters, including chemical shift tensors and quadrupolar tensors for 14N, 17O, and 35Cl, are calculated for the crystalline forms of various amino acids under periodic boundary conditions and complemented by experiment where necessary. The 13C shift tensors and 14N electric field gradient (EFG) tensors are in excellent agreement with experiment. Similarly, static 17O NMR spectra could be precisely simulated using the calculation of the full chemical shift (CS) tensors and their relative orientation with the EFG tensors. This study allows correlations to be found between hydrogen bonding in the crystal structures and the 17O NMR shielding parameters and the 35Cl quadrupolar parameters, respectively. Calculations using the two experimental structures for L-alanine have shown that, while the calculated isotropic chemical shift values of 13C and 15N are relatively insensitive to small differences in the experimental structure, the 17O shift is markedly affected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号