首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The thermal decomposition of precursors for copper indium disulphide (CuInS2) thin films obtained by drying aqueous solutions of copper chloride (CuCl2), indium chloride (InCl3) and thiourea (SC(NH2)2) at the Cu:In:S molar ratios of 1:1:3 (1) and 1:1:6 (2) was monitored by simultaneous thermogravimetry /differential thermal analysis/ evolved gas analysis-mass spectrometry (TG/DTA/EGA-MS) measurements in a dynamic 80 %Ar + 20 %O2 atmosphere. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy were used to characterise the dried precursors and products of the thermal decomposition. The precursors 1 and 2 are mixtures of copper and indium chloride thiourea complex compounds, whilst 1 can also contain unreacted InCl3. The thermal degradation of 1 and 2 in the temperature range of 30–800 °C consists of six steps with a total mass loss of 71.5 and 89.8 %, respectively. According to XRD, CuInS2 is formed below 300 °C. Decomposition of 1 and 2 is completed at 620 and 600 °C, respectively. The final decomposition product of 1 at 800 °C consists of a mixture of In2O3 and CuO phases, whilst 2 consists of In2O3, CuO and Cu2In2O5 phases. EGA by MS revealed the release of CS2, NH3, H2NCN and HNCS, which upon their oxidation also yield COS, SO2, HCN and CO2.  相似文献   

3.
In2Se3 films up to 300 nm thick have been obtained for the first time by hydrochemical deposition on glass, glass ceramic, and molybdenum substrates in the In(NO3)3–C4O6H6–CSeN2H4 system with the use of selenourea as a chalcogenizing agent. The phase and element composition and morphological features of layers obtained at 353 and 363 K have been studied by X-ray photoelectron spectroscopy, energy-dispersive electron probe X-ray microanalysis, and scanning electron microscopy. The optical band gap width has been determined.  相似文献   

4.
The La2S3-Ga2S3-EuS system has been investigated along the 3Ga2S3-EuLaGa3S7 join by physicochemical methods (DTA, X-ray powder diffraction, microstructural analysis). is a quasi-binary eutectic-type section of the ternary system. Solubility on the base of both components has been revealed in the system. Solubility at room temperature is 3 mol % EuLaGa3S7 on the Ga2S3 side 1.5 mol % Ga2S3 and on the base of the EuLaGa3S7 compound. The coordinates of the eutectic point are 80 mol% EuLaGa3S7 and 1020 K.  相似文献   

5.
6.
7.
Phase equilibria in the La2S3-Bi2S3-La2O3 ternary system were studied by differential thermal, X-ray powder diffraction, and microstructure analyses. Phase diagrams of five vertical sections and a liquidus surface projection were plotted for the La2S3-Bi2S3-La2O3 system. The regions of primary crystallization of phases and coordinates of non- and monovariant equilibria were determined for the system.  相似文献   

8.
The sensor properties of nanostructured films of SnO2, In2O3, and their combinations for detecting CO in air in the temperature range of 330–520°C were investigated. It was found that SnO2 films show the least sensitivity to CO. Sensitivity grows as the concentration of In2O3 in SnO2 increases, and it reaches its maximum value in pure In2O3. At the same time, the maximum of sensitivity to CO in air shifts towards low temperatures. Sensor response time was found to be about 1 s for the studied SnO2 and In2O3 films, and about 0.5 s for the composite film. The mechanism of sensor sensitivity for the studied metal oxide films in detecting CO in air is discussed.  相似文献   

9.
The MnS-Pr2S3 phase diagram is of the eutectic type with incomplete solubility based on the starting sulfides (MnS and Pr2S3). The extent of the MnS-based solid solution at 1470 K is 1 mol % Pr2S3. γ-Pr2S3 at 1470 K dissolves 23 mol % MnS, α-Pr2S3 at 1170 K dissolves 6 mol % MnS. The eutectic composition (30 mol % Pr2S3 at 1550 K) coincides with the value calculated from the Schroeder equation for the liquidus branch descending from MnS. A value of 64 kJ/mol was calculated for the heat of melting of Pr2S3 using the Schroeder equation.  相似文献   

10.
BiFeO3 thin films were processed on platinized silicon substrate via chemical solution deposition. Short wave UV assisted pyrolysis was conducted in oxygen atmosphere in order to obtain a fine and homogeneous grain structure. Phase pure thin films with a pronounced (100) texture were obtained at a fairly low annealing temperature of 600°C. For comparison specimens processed without UV assisted pyrolysis were also investigated. It is shown that UV assisted pyrolysis leads to a substantial improvement of leakage resistance properties. Polarization switching could also be obtained using capacitance-voltage (C-V) curves. The leakage current was investigated as a function of temperature. Interpretation in terms of Frenkel-Poole mechanism leads to a high trap depth in the range of 2.4 eV which is attributed to the creation of Fe2+ centres. For both microstructures investigated well saturated magnetization loops were obtained with a remnant magnetization of 2Mr = 5.4 emu/cm3 and a coercive fields in the range of 2Hc = 200 Oe. Slightly higher saturation magnetization 2Ms of 55.4 emu/cm3 was obtained for UV assisted pyrolysis in comparison to 45.8 emu/cm3 for the thin films processed without UV.  相似文献   

11.
The Sm2S3-Sm2O3 phase diagram was studied by physicochemical methods of analysis from 800 K up to melting. Two oxysulfides are formed in the system: Sm10S14O with tetragonal crystal structure (space group I41/acd; unit cell parameters: a = 1.4860 nm, c = 1.9740 nm; microhardness: H = 4700 MPa; solid decomposition temperature: 1500 K) and Sm2O2S with hexagonal structure (space group P-3m1; a = 0.3893 nm, c = 0.6717 nm; H = 4500 MPa; congruent melting temperature: 2370 K). Within the extent of the Sm2O2S-based solid solution (61–70 mol % Sm2O3) at 1070 K, a singular point appears at the compound composition on property-composition curves. The eutectic coordinates: 23 mol % Sm2O3 and 1850 K; 80 mol % Sm2O3 and 2290 K.  相似文献   

12.
The optical and mechanical properties of amorphous SiO2 films deposited on soda-lime silicate float glass by reactive RF magnetron sputtering at room temperature were investigated in dependence of the process pressure. The densities of the films are strongly influenced by the process pressure and vary between 2.38 and 1.91 g cm?3 as the pressure changes from 0.27 to 1.33 Pa. The refractive indices of the films shift between 1.52 and 1.37, while the residual compressive stresses in the deposited films vary in the range from 440 to 1 MPa. Hardness and reduced elastic modulus values follow the same trend and decline with the increase of process pressure from 8.5 to 2.2 GPa and from 73.7 to 30.9 GPa, respectively. The abrasive wear resistance decreases with the density of the films.  相似文献   

13.
Thin films of La2O3 were deposited onto glass substrates by ultrasonic spray pyrolysis. Their structural and morphological properties were characterized by X-ray diffraction, Fourier transform Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photo-electron spectroscopy, Brunauer-Emmett-Teller and optical absorption techniques. The sensor displays superior CO2 gas sensing performance at a low operating temperature of 498 K. The signal change on exposure to 300 ppm of CO2 is about 75%, and the signal only drops to 91% after 30 days of operation.
Graphical abstract Schematic diagram of the CO2 gas sensing mechanism of an interconnected web-like La2O3 nanostructure in presence of 300 ppm of CO2 gas and at an operating temperature of 498 K.
  相似文献   

14.
Phase diagrams have been designed for the systems Sc2S3-Ln2S3 where Ln = La, Nd, or Gd. In these systems, complex sulfides crystallize in orthorhombic space group Pnma. The sulfides melt congruently and have the following parameters; for LaScS3, a = 0.718 nm, b = 0.654 nm, c = 0.960 nm, 2000 K, 3200 MPa; for NdScS3, a = 0.712 nm, b = 0.646 nm, c = 0.952 nm, 1960 K, 3500 MPa; and for GdScS3, a = 0.704 nm, b = 0.640 nm, c = 0.946 nm, 1900 K, 3400 MPa. The extents of the solid solutions based on the existing phases increase as the effective ion radii of Ln3+ approaches that of Sc3+. At 1670 K, the LnScS3 homogeneity region is 48–52 mol % Nd2S3 and 46–54 mol % Gd2S3. Sc2S3 dissolves 3 mol % Nd2S3 and 6 mol % Gd2S3. γ-Nd2S3 dissolves 2 mol % Sc2S3, and γ-Gd2S3 dissolves 4 mol % Sc2S3. The subsystems Sc2S3-LnScS3 and LnScS3-Ln2S3 are of the eutectic type. The eutectic coordinates are, respectively, 27 mol % La2S3, 1880 K; 75 mol % La2S3, 1800 K; 30 mol % Nd2S3, 1850 K; 74 mol % Nd2S3, 1770 K; 33 mol % Gd2S3, 1800 K; and 74 mol % Gd2S3, 1730 K.  相似文献   

15.
Chemisorption of SO2 and O2 on the In2O3 surface containing a zinc additive (0.4–2.7 at.%) was studied in a temperature range of 22–200 °C. At least three forms of sorbed SO2 exist on the modified In2O3 surface. The temperature affects the contribution of single forms of SO2 sorption and, hence, the change in the electric conductivity. The preliminary sorption of O2 favors the formation of a donor form of chemisorbed SO2. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2228–2232, October, 2005.  相似文献   

16.
The possibility of synthesizing complex sulfide phases in the BaSm2S4-Tm2S3 system has been studied. Tm2S3 solid solutions were obtained with BaSm2S4 (CaFe2O4 structural type). The samples were identified by X-ray diffraction analysis and electron microscopy. The range of the solid solutions was determined. The total conductance was studied, and the conductance activation energy was calculated for samples with different dopant contents. The electrolytic properties of basic ternary sulfide and complex sulfide phases in the BaSm2S4-x mol % Tm2S3 system were investigated. A possible mechanism of defect formation was proposed.  相似文献   

17.
The effect of O2, Cl2, and SO2 on electrophysical and sorption properties of powdered In2O3 with a large specific area is studied at 23–200°C. The specimen is most sensitive to Cl2 and SO2 at near-room temperatures.__________Translated from Elektrokhimiya, Vol. 41, No. 5, 2005, pp. 529–536.Original Russian Text Copyright © 2005 by Vinokurova, Derlyukova.  相似文献   

18.
Perovskite phases Ba3In2ZrO8 and Ba4In2Zr2O11 with the nominal concentration of structural oxygen vacancies 1/9 and 1/12, respectively, were synthesized by solid-phase and solution methods. X-ray diffraction showed cubic symmetry of both phases with the unit cell parameter a = 0.4193(2) and 0.4204(3) nm, respectively. The absence of superstructural lines resulted in the conclusion on statistical arrangement of oxygen vacancies. Thermogravimetry and mass spectrometry proved that both phases can reversibly absorb water from gas phase (pH2O = 2 × 10−2 atm) with observed correlation between the concentration of oxygen vacancies and amount of absorbed water. The total water amount was up to 0.9 mol per formula unit or, if recalculated for perovskite unit ABO3, 0.3 and 0.23 mol H2O, respectively. The temperature curves of coductivity in the atmosphere with various partial water vapor pressures (pH2O = 3 × 10−5 and 2 × 10−2 atm) showed significantly higher conductivity and lower activation energy (0.52 eV) in humid atmosphere due to proton transfer. The proton conductivity is up to 5 × 10−4 Ohm−1 cm−1 at 300°C for Ba3In2ZrO8 specimen. IR spectrometry showed that protons in the structure exist primarily in OH-groups.  相似文献   

19.
20.
Phase equilibria in the BaS-Cu2S-Gd2S3 system have been studied along the 800 K isothermal section and the CuGdS2-BaS, Cu2S-BaGdCuS3, BaGdCuS3-Gd2S3, and BaGdCuS3-BaGd2S4 polythermal sections. Complex sulfide BaGdCuS3 is formed in the title system; it has an orthorhombic KZrCuSe3-type structure (space group Cmcm) with the unit cell parameters equal to a = 0.40529(2) nm, b = 1.34831(6) nm, c = 1.02940(5) nm. This sulfide melts congruently at 1685 K. BaGdCuS3 is in equilibrium with sulfides Cu2S, BaS, Gd2S3, CuGdS2, BaGd2S4, BaCu4S3, and BaCu2S2 and with compositions in the C0 solid-solution region of the Cu2S-Gd2S3 system. Eutectics are formed between compounds CuGdS2 and BaGdCuS3 at 7.0 mol % BaS and T = 1325 K, between BaGdCuS3 and BaS at 64.0 mol % BaS and T = 1625 K, between Cu2S and BaGdCuS3 at 8.0 mol % BaGdCuS3 and T = 1125 K, between Gd2S3 and BaGdCuS3 at 64.0 mol % Gd2S3 and 1495 K, and between BaGdCuS3 and BaGd2S4 at 35 mol % BaGd2S4 and T = 1660 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号