首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational study of the N(4S) + CH2Cl reaction has been carried out. The first step of the reaction is the formation of an initial intermediate (NCH2Cl), which is relatively stable and does not involve any energy barrier. The two most exothermic products are those resulting from the release of a chlorine atom, H2C=N + Cl and trans-HC=NH + Cl. A kinetic study within the framework of the statistical theories suggests that the kinetically preferred product is also the most exothermic one. This is in contrast with the analogue reaction of nitrogen atoms with CH2F, where the preferred product from both thermodynamic and kinetic points of view is HFCN + H. Therefore, reactions of nitrogen atoms with chloromethyl radicals release chlorine atoms as major products. The rate coefficient for the title reaction is estimated to be about 3.09 x 10(-13) cm3 s(-1) molecule(-1) at 300 K, a value four times smaller than the rate coefficient for its fluorine analogue.  相似文献   

2.
The origin of enhanced reactivity of alpha-nucleophiles in SN2 reactions was examined on the basis of computational results at the high level G2(+) method for 22 gas-phase reactions: Nu- + RCl --> RNu + Cl- [R = Et and i-Pr; Nu- = HO-, CH3O-, HS-, Cl-, Br-, NH2O-, HOO-, FO-, HSO-, ClO-, and BrO-]. The results clearly indicate the existence of the alpha-effect, whose size varies depending on the R group and the identity of the alpha-atom. The alpha-effect is larger for i-PrCl than EtCl, and for an alpha-nucleophile with a harder alpha-atom. Analyses of the present results, together with previously reported ones for MeF and MeCl reactions, reveal that several rationales so far presented to explain the alpha-effect, such as thermodynamic product stability, transition state (TS) tightness, electrostatic interaction, ET rationale, and polarizability, cannot explain the observed size of the alpha-effect. The importance of deformation energy on going from the reactant to the TS is presented.  相似文献   

3.
本文报道了以氯磺酸钾为电解质, 铂为电极, 进行氯磺酸的阳极氧化, 产生过氧二磺酰氯, 并和阳极池内α,ω-氯磺含氟烷进行反应, 生成相应的氯磺酸酯, 反应主要副产物为α,ω-二氯全氟烷, 在阳极有大量氢气逸出, 并得到碘。  相似文献   

4.
Ren Y  Yamataka H 《Organic letters》2006,8(1):119-121
This paper re-examines gas-phase S(N)2 reactions at saturated carbon for model reactions Nu(-) + CH(3)Cl --> CH(3)Nu + Cl(-) (Nu(-) = HO(-), MeO(-), NH(2)(-), HS(-), Cl(-), Br(-), I(-), HOO(-), MeOO(-), HSS(-), and NH(2)NH(-)) using the G2(+) theory. The calculated results show that the alpha-effect does exist in the gas-phase S(N)2 reaction at the sp(3) carbon, contrary to the currently accepted notion of the absence of the alpha-effect in the gas phase.  相似文献   

5.
The potential energy profiles of 18 identity S(N)2 reactions have been estimated by using G2-type quantum-chemical calculations. The reactions are: X- + CH3-X --> X-CH3 + X- and XH + CH3-XH+ --> +HX-CH3 + XH (X = NH2, OH, F, PH2, SH, Cl, AsH2, SeH, Br). Despite the charge difference, the barrier heights and the geometrical requirements upon going from the reactant to the transition structure are surprisingly similar for X- and XH. The barrier heights decrease on going from left to right in the periodic table, and increasing ionization energy (of X- and XH) is correlated with decreasing barrier. The observed trends are explained in terms of substrates with stronger electrostatic character giving rise to lower energetic barriers due to decreased electron repulsion in the transition structure. On the basis of this study, the relationship between the kinetic concept of nucleophilicity and the thermodynamic concept of basicity has been analyzed and clarified. Since the trends in intrinsic nucleophilicity (only defined for identity reactions) and basicity are opposite, overall nucleophilicity (defined for any reaction) will be determined by the relative contribution of the two factors. Only for strongly exothermic reactions will basicity and nucleophilicity be matching.  相似文献   

6.
The gas-phase identity nucleophilic substitution reactions of halide anions (X = F, Cl, and Br) with cyclopropenyl halides, X(-) + (CH)(3)X <= => X(CH)(3) + X(-), are investigated theoretically at four levels of theory, B3LYP/6-311+G**, MP2/6-311+G**, G2(+)MP2//MP2/6-311+G**, and G2(+)//MP2/6-311+G**. Four types of reaction paths, the sigma-attack S(N)2, pi-attack S(N)2'-syn, and S(N)2'-anti and sigmatropic 1,2-shift, are possible for all the halides. In the fluoride anion reactions, two types of stable adducts, syn- and anti-1,2-difluorocyclopropyl anions, can exist on the triple-well-type potential energy surface of the identity substitution reactions with rearrangement of double bond (C=C), S(N)2'-syn, and S(N)2'-anti processes. The TSs for the sigma-attack S(N)2 paths have "open" (loose) structures so that the ring positive charges are high rendering strong aromatic cyclopropenyl (delocalized) cation-like character. In contrast, in the pi-attack S(N)2' paths, a lone pair is formed at the unsubstituted carbon (C3), which stabilizes the 1,2-dihalocyclopropyl (delocalized) anion-like TS by two strong n(C)-sigma*(C-F) vicinal charge-transfer delocalization interactions. The barrier height increases in the order S(N)2'-anti < sigma-attack S(N)2 < S(N)2'-syn for X = Cl and Br, whereas for X = F the order is changed to S(N)2'-anti < S(N)2'-syn < sigma-attack S(N)2 due to the stable difluoro adduct formation. The sigmatropic 1,2-shift (circumambulatory) reactions have high activation barriers and cannot interfere with the substitution reactions.  相似文献   

7.
S(N)2-like reactions in hydrogen-bonded complexes have been investigated in this paper at a correlated MP2(full)/6-311++G(3df,3pd) level, employing FH...NH(3)...HF and ClH...NH(3)...HCl as model systems. The unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond can coexist in one complex which is taken as the reactant of the S(N)2-like reaction. The S(N)2-like reaction occurs along with the inversion of NH(3) and the interconversion of the unconventional F(Cl)-H...N noncovalent bond and the conventional F(Cl)-H...N hydrogen bond. In comparison with that of the isolated NH(3), the inversion barriers of the two complexes both are significantly reduced. The effect of carbon nanotube confinement on the inversion barrier is also discussed.  相似文献   

8.
It is textbook knowledge that nucleophilic substitution at carbon (SN2@C) proceeds via a central reaction barrier which disappears in the corresponding nucleophilic substitution reaction at silicon (SN2@Si). Here, we address the question why the central barrier disappears from SN2@C to SN2@Si despite the fact that these processes are isostructural and isoelectronic. To this end, we have explored and analyzed the potential energy surfaces (PES) of various Cl-+CR3Cl (R=H, CH3) and Cl-+SiR3Cl model reactions (R=H, CH3, C2H5, and OCH3). Our results show that the nature of the SN2 reaction barrier is in essence steric, but that it can be modulated by electronic factors. Thus, simply by increasing the steric demand of the substituents R around the silicon atom, the SN2@Si mechanism changes from its regular single-well PES (with a stable intermediate transition complex, TC), via a triple-well PES (with a pre- and a post-TS before and after the central TC), to a double-well PES (with a TS; R=OCH3), which is normally encountered for SN2@C reactions.  相似文献   

9.
陈庆云  魏莫愁 《化学学报》1987,45(4):354-358
用典型自由基引发(hv,Cu,S2O4^2^-,ABN,DBP等),可以使2-卤四氟碘乙烷(1)(XCF2CF2I,X=Cl,I)产生四氟乙烯.从而证实了2-卤四氟乙基自由基在温和实验条件下能够发生β-断裂.1与亲核试剂(如PPh3,F^-,Cl^-,Br^-,CH3O^-,PhS^-等)作用结果,同样能得到四氟乙烯.这是符合离子型亲卤反应机理的.由此可见,1具有参与自由基机理和亲卤机理反应的双重性质.  相似文献   

10.
Quasiclassical direct dynamics trajectories, calculated at the MP2/6-31G level of theory, are used to study the central barrier dynamics for the C1(-) + CH(3)Cl S(N)2 reaction. Extensive recrossings of the central barrier are observed in the trajectories. The dynamics of the Cl(-)-CH(3)Cl complex is non-RRKM and transition state theory (TST) is predicted to be an inaccurate model for calculating the Cl(-) + CH(3)Cl S(N)2 rate constant. Direct dynamics trajectories also show that Cl(-) + CH(3)Cl trajectories, which collide backside along the S(N)2 reaction path, do not form the Cl(-)-CH(3)Cl complex. This arises from weak coupling between the Cl(-)-CH(3)Cl intermolecular and CH(3)Cl intramolecular modes. The trajectory results are very similar to those of a previous trajectory study, based on a HF/6-31G* analytic potential energy function, which gives a less accurate representation of the central barrier region of the Cl(-) + CH(3)Cl reaction than does the MP2/6-31G* level of theory used here. Experiments are suggested for investigating the non-RRKM and non-TST dynamics predicted by the trajectories.  相似文献   

11.
Guided ion beam tandem mass spectrometry techniques are used to examine the competing product channels in the reaction of Cl(-) with CH(3)F in the center-of-mass collision energy range 0.05-27 eV. Four anionic reaction products are detected: F(-), CH(2)Cl(-), FCl(-), and CHCl(-). The endothermic S(N)2 reaction Cl(-) + CH(3)F --> CH(3)Cl + F(-) has an energy threshold of E(0) = 181 +/- 14 kJ/mol, exhibiting a 52 +/- 16 kJ/mol effective barrier in excess of the reaction endothermicity. The potential energy of the S(N)2 transition state is well below the energy of the products. Dynamical impedances to the activation of the S(N)2 reaction are discussed, including angular momentum constraints, orientational effects, and the inefficiency of translational energy in promoting the reaction. The fluorine abstraction reaction to form CH(3) + FCl(-) exhibits a 146 +/- 33 kJ/mol effective barrier above the reaction endothermicity. Direct proton transfer to form HCl is highly inefficient, but HF elimination is observed above 268 +/- 95 kJ/mol. Potential energy surfaces for the reactions are calculated using the CCSD(T)/aug-cc-pVDZ and HF/6-31+G(d) methods and used to interpret the dynamics.  相似文献   

12.
[Structure: see text]. Ab initio calculations were used to study the S(N)2 reactions of the CH3OCH2I molecule with a methoxide ion (CH3O-) and a methanol molecule by systematically building up the reaction system with explicit incorporation of the methanol solvent molecules. For the reaction of CH3OCH2I with a methoxide ion, the explicit incorporation of the methanol molecules to better solvate the methoxide ion led to an increase in the barrier to reaction. For the reaction of CH3OCH2I with a methanol molecule, the explicit incorporation of the methanol molecules led to a decrease in the barrier to reaction because of an inclination of this reaction to proceed with the nucleophilic displacements accompanied by proton transfer through the H-bonding chain. The H-bonding chain served as both acid and base catalysts for the displacement reaction. A ca. 10(15)-fold acceleration of the methanol tetramer incorporated S(N)2 reaction was predicted relative to the corresponding methanol monomer reaction. The properties of the reactions examined are discussed briefly.  相似文献   

13.
The S N2 identity exchange reactions of the fluoride ion with benzyl fluoride and 10 para-substituted derivatives (RC6H 4CH 2F, R = CH3, OH, OCH 3, NH2, F, Cl, CCH, CN, COF, and NO2) have been investigated by both rigorous ab initio methods and carefully calibrated density functional theory. Groundbreaking focal-point computations were executed for the C6H5CH 2F + F (-) and C 6H 5CH2Cl + Cl (-) SN2 reactions at the highest possible levels of electronic structure theory, employing complete basis set (CBS) extrapolations of aug-cc-pV XZ (X = 2-5) Hartree-Fock and MP2 energies, and including higher-order electron correlation via CCSD/aug-cc-pVQZ and CCSD(T)/aug-cc-pVTZ coupled cluster wave functions. Strong linear dependences are found between the computed electrostatic potential at the reaction-center carbon atom and the effective SN2 activation energies within the series of para-substituted benzyl fluorides. An activation strain energy decomposition indicates that the SN2 reactivity of these benzylic compounds is governed by the intrinsic electrostatic interaction between the reacting fragments. The delocalization of nucleophilic charge into the aromatic ring in the SN2 transition states is quite limited and should not be considered the origin of benzylic acceleration of SN2 reactions. Our rigorous focal-point computations validate the benzylic effect by establishing SN2 barriers for (F (-), Cl (-)) identity exchange in (C6H5CH2F, C6H 5CH2Cl) that are lower than those of (CH3F, CH3Cl) by (3.8, 1.6) kcal mol (-1), in order.  相似文献   

14.
Only two silyldichloramines, (C6H5)3SiNCl2 and (CH3)3SiNCl2, have been reported in the literature. The synthesis of the former was successfully repeated, and its structure was established by single-crystal X-ray diffraction and vibrational spectroscopy. Attempts to prepare (CH3)3SiNCl2 were unsuccessful; however, a new trialkylsilyldichloramine, t-BuMe2Si-NCl2, was prepared and characterized by Raman and multinuclear NMR spectroscopy. The reaction of t-BuMe2SiNCl2 with (CH3)4NF in CHF3 solution at -78 degrees C, followed by removal of all volatile products at -30 degrees C, produced the expected t-BuMe2SiF byproduct and a white solid consisting of NCl3 absorbed on Me4NCl. The NCl3 could be reversibly desorbed from the substrate and was identified as a neat liquid at room temperature by Raman spectroscopy. The observed final reaction products are consistent with the formation of an unstable N(CH3)4+NCl2- intermediate which decomposes to N(CH3)4+Cl- and NCl molecules which can dimerize to N2Cl2. Theoretical calculations confirm that NCl2- can readily lose Cl- and that N2Cl2 also possesses a low barrier toward loss of N2 to give chlorine atoms and, thus, can account for the formation of NCl3.  相似文献   

15.
16.
To probe the cis effect of the corrin macrocycle in vitamin B12 derivatives, equilibrium constants for the substitution of coordinated H2O in aquacobalamin (vitamin B12a, H2OCbl+) and in aqua-10-chlorocobalamin, H2O-10-ClCbl+, (in which Cl has replaced the C10 H) by an exogenous ligand, L (L = an anion, NO2-, SCN-, N3-, OCN-, S2O3(2-), NCSe- or a neutral N-donor, CH3NH2, pyridine, imidazole) have been determined. The cis influence reported in the electronic spectra of the cobalamins is observed in the spectra of L-10-ClCbls as well. Anionic ligands bind more strongly to H2O-10-ClCbl+ than to H2OCbl+ with log K values between 0.10 and 0.63 (average 0.26) larger; the converse is true for the neutral N-donor ligands, where log K is between 0.17 and 0.3 (average 0.25) smaller. Semi-empirical molecular orbital (SEMO) calculations using the ZINDO/1 model on the hydroxo complexes show that charge density is delocalised from the axial donor atom to the metal and Cl. This explains why coordinated OH- is a poorer base in HO-10-ClCbl than in HOCbl and the pK(a) of H2O-10-ClCbl+ is lower than that of H2OCbl+. It further explains why, because of the ability of the metal in concert with the C10 Cl to accept charge density from the ligand, an anionic ligand will bind more strongly to Co(III) in H2O-10-ClCbl+ than in H2OCbl+. The kinetics of the replacement of coordinated H2O by two probe ligand, pyridine and azide, were determined. The rate constants for substitution of H2O in H2O-10-ClCbl+ by pyridine show saturation, whilst those for substitution by N3- do not; this is inconsistent with a purely dissociative mechanism and the reactions proceed through an interchange mechanism. The values of the activation parameters are more positive for the reaction between these ligands and H2OCbl+, than for their reaction with H2O-10-ClCbl+. This is interpreted to mean that the transition state in the reaction of H2O-10-ClCbl+ occurs earlier along the reaction coordinate. In the temperature range studied, H2O-10-ClCbl+ reacts more slowly with py and N3- than does H2OCbl+. SEMO calculations indicate that as the Co-O bond to the departing H(2)O molecule is stretched, the charge density on Co in H2OCbl+ is always lower than on Co in H2O-10-ClCbl+. This suggests that the former is a better electrophile towards the incoming ligand, and offers an explanation for the kinetics observations.  相似文献   

17.
The anionic S(N)2 reactions at neutral nitrogen, Nu(-) + NR(2)Cl → NR(2)Nu + Cl(-) (R = H, Me; Nu = F, Cl, Br, OH, SH, SeH, NH(2), PH(2), AsH(2)) have been systematically studied computationally at the modified G2(+) level. Two reaction mechanisms, inversion and retention of configuration, have been investigated. The main purposes of this work are to explore the reactivity trend of anions toward NR(2)Cl (R = H, Me), the steric effect on the potential energy surfaces, and the leaving ability of the anion in S(N)2@N reactions. Our calculations indicate that the complexation energies are determined by the gas basicity (GB) of the nucleophile and the electronegativity (EN) of the attacking atom, and the overall reaction barrier in the inversion pathway is basically controlled by the GB value of the nucleophile. The retention pathway in the reactions of NR(2)Cl with Nu(-) (Nu = F, Cl, Br, OH, SH, SeH) is energetically unfavorable due to the barriers being larger than those in the inversion pathway by more than 120 kJ mol(-1). Activation strain model analyses show that a higher deformation energy and a weaker interaction between deformed reactants lead to higher overall barriers in the reactions of NMe(2)Cl than those in the reactions of NH(2)Cl. Our studies on the reverse process of the title reactions suggest that the leaving ability of the anion in the gas phase anionic S(N)2@N reactions is mainly determined by the strength of the N-LG bond, which is related to the negative hyperconjugation inherent in NR(2)Nu (R = H, Me; Nu = HO, HS, HSe, NH(2), PH(2), AsH(2)).  相似文献   

18.
The thermal and photochemical transformations of primary amine radical cations (n-propyl 1.+, n-butyl 5.+) generated radiolytically in freon matrices have been investigated by using low-temperature EPR spectroscopy. Assignment of the spectra was facilitated by parallel studies on the corresponding N,N-dideuterioamines. The identifications were supported by quantum chemical calculations on the geometry, electronic structure, hyperfine splitting constants and energy levels of the observed transient radical species. The rapid generation of the primary species by a short exposure (1-2 min) to electron-beam irradiation at 77 K allowed the thermal rearrangement of 1.+ to be monitored kinetically as a first-order reaction at 125-140 K by the growth in the well-resolved EPR signal of the distonic radical cation .C(2CH2CH2NH3+. By comparison, the formation of the corresponding .CH2CH2CH2CH2NH3+ species from 5.+ is considerably more facile and already occurs within the short irradiation time. These results directly verify the intramolecular hydrogen-atom migration from carbon to nitrogen in these ionised amines, a reaction previously proposed to account for the fragmentation patterns observed in the mass spectrometry of these amines. The greater ease of the thermal rearrangement of 5.+ is in accordance with calculations on the barrier heights for these intramolecular 1,5- and 1,4-hydrogen shifts, the lower barrier for the former being associated with minimisation of the ring strain in a six-membered transition state. For 1.+, the 1,4-hydrogen shift is also brought about directly at 77 K by exposure to approximately 350 nm light, although there is also evidence for the 1,3-hydrogen shift requiring a higher energy. A more surprising result is the photochemical formation of the H2C=N. radical as a minor product under hard-matrix conditions in which diffusion is minimal. It is suggested that this occurs as a consequence of the beta-fragmentation of 1.+ to the ethyl radical and the CH2=NH2+ ion, followed by consecutive cage reactions of deprotonation and hydrogen transfer from the iminonium group. Additionally, secondary ion-molecule reactions were studied in CFCl2CF2Cl under matrix conditions that allow diffusion. The propane-1-iminyl radical CH3CH2CH=N. was detected at high concentrations of the n-propylamine substrate. Its formation is attributed to a modified reaction sequence in which 1.+ first undergoes a proton transfer within a cluster of amine molecules to yield the aminyl radical CH3CH2CH2N.H. A subsequent disproportionation of these radicals can then yield the propane-1-imine precursor CH3CH2CH=NH, which is known to easily undergo hydrogen abstraction from the nitrogen atom. The corresponding butane-1-iminyl radical was also observed.  相似文献   

19.
The identity S(N)2 reactions on nitrogen (see eq 3) with nucleophiles having the general structure H(n)()X(-) where X belongs to the group of nonmetallic elements which do not border the line separating them from the metallic elements (X = F, Cl, Br, I, O, S, Se, N, P, and C) were studied at the G2+ level. The results show that, similarly to the previously observed phenomenon for S(N)2 reaction on carbon (J. Am. Chem. Soc. 1999, 121, 7724), the Periodic Table, through the valence of the element X, controls the intrinsic barrier for the reaction. The average intrinsic barriers obtained for nitrogen substrates were 20, 27, 39, and 57 kcal/mol for the mono-, di-, tri-, and tetravalent X's, respectively. It is also concluded that the intrinsic barriers are similar for N- and C-based substrates and dimethyl substitution on both raises the intrinsic barrier by ca. 10 kcal/mol.  相似文献   

20.
A laser flash photolysis-long path UV-visible absorption technique has been employed to investigate the kinetics of aqueous phase reactions of chlorine atoms (Cl) and dichloride radicals (Cl2(-)) with four organic sulfur compounds of atmospheric interest, dimethyl sulfoxide (DMSO; CH3S(O)CH3), dimethyl sulfone (DMSO2; CH3(O)S(O)CH3), methanesulfinate (MSI; CH3S(O)O-), and methanesulfonate (MS; CH3(O)S(O)O-). Measured rate coefficients at T = 295 +/- 1 K (in units of M(-1) s(-1)) are as follows: Cl + DMSO, (6.3 +/- 0.6) x 10(9); Cl2(-) + DMSO, (1.6 +/- 0.8) x 10(7); Cl + DMSO2, (8.2 +/- 1.6) x 10(5); Cl2(-) + DMSO2, (8.2 +/- 5.5) x 10(3); Cl2(-) + MSI, (8.0 +/- 1.0) x 10(8); Cl + MS, (4.9 +/- 0.6) x 10(5); Cl2(-) + MS, (3.9 +/- 0.7) x 10(3). Reported uncertainties are estimates of accuracy at the 95% confidence level and the rate coefficients for MSI and MS reactions with Cl2(-) are corrected to the zero ionic strength limit. The absorption spectrum of the DMSO-Cl adduct is reported; peak absorbance is observed at 390 nm and the peak extinction coefficient is found to be 5760 M(-1) cm(-1) with a 2sigma uncertainty of +/-30%. Some implications of the new kinetics results for understanding the atmospheric sulfur cycle are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号