首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new lanthanide-radical complexes [Ln(Hfac)3(NIT-4PhAllO)2](Ln(III) = Gd (I), Tb (II); Hfac = hexafluoroacetylacetonate; NIT-4PhAllO = 4′-allyloxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been prepared and characterized in structurally as well as magnetically. Single crystal X-ray diffraction analyses reveal that two complexes are isostructural with mononuclear tri-spin structure, in which the metal ions are eight-coordinated in distorted dodecahedron geometry. The nitronyl nitroxide radicals act as monodentate ligands towards Ln(Hfac)3 unit through the oxygen atom of the nitronyl nitroxide group. Magnetic studies reveal that the Gd-coordinated nitroxide interaction is ferromagnetic.  相似文献   

2.
Two new complexes based on lanthanide ions and nitronyl nitroxide radical, Ln(hfac)3(NITPh-p-Cl)2 (Ln = Gd(1), Nd(2); hfac = hexafluoroacetylacetonate; NITPh-p-Cl = 2-(4′-chlorphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) have been synthesized and characterized by single-crystal X-ray diffraction. The single-crystal structures show that two complexes have similar structures, which consist of radical-Ln-radical isolated molecules. The Ln(III) ions are eight-coordinated in slightly distorted dodecahedral geometry. NITPh-p-Cl molecules act as monodentate ligands linking two Ln(III) ions through the oxygen atoms of the N-O groups. The magnetic studies show that the spin coupling between the Gd(III) ion and the radicals in the complex 1 is weak ferromagnetic (J = 0.38 cm−1), while complex 2 exhibits antiferromagnetic interactions (zJ′ = −0.36 cm−1) between Nd(III) ion and radicals.  相似文献   

3.
Three Radical-Ln(III)-Radical complexes based on nitronyl nitroxide radicals have been synthesized, structurally and magnetically characterized: [Gd(hfac)3(NITPhOEt)2] (1) (hfac=hexafluoroacetylacetonate, and NITPhOEt=4′-ethoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide), [Gd(hfac)3(NITPhOCH2Ph)2] (2) (NITPhOCH2Ph=4′-benzyloxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and [Lu(hfac)3(NITPhOCH2Ph)2] (3). The X-ray crystal structure analyses show that the structures of the three compounds are similar and all consist of the isolated molecules, in which central ions GdIII or LuIII are coordinated by six oxygen atoms from three hfac and two oxygen atoms from nitronyl radicals. The magnetic studies show that in both of the two GdIII complexes, there are ferromagnetic GdIII-Rad interactions and antiferro-magnetic Rad-Rad interactions in the molecules (with JRad−Gd=0.27 cm−1, jRad-Rad=−2.97 cm−1 for 1: and JRad−Gd=0.62 cm−1, jRad-Rad=−7.01 cm−1 for 2). An analogous complex of [Lu(hfac)3 (NITPhOCH2Ph)2] (3) containing diamagnetic LuIII ions has also been introduced for further demonstrating the nature of magnetic coupling between radicals.  相似文献   

4.
Molecular and crystal structures are determined for amino-substituted nitronyl nitroxide 1, the products of its subsequent oxidation, acylation, and reduction: zwitter-ions 3a, 3b and salts K(4b) and K2(4b)(CF3CO2).  相似文献   

5.
选用1,2-二苯氧基乙烷取代的氮氧双自由基(BNPhOEt)与稀土金属反应,得到了2例氮氧双自由基-稀土配合物[Ln(hfac)3(BNPhOEt)]·C6H14(Ln=Tb(1)、Ho(2);hfac=六氟乙酰丙酮),其均为2p-4f一维链状结构.磁性研究表明,在配合物1和2中分别存在铁磁和反铁磁耦合.此外,对2个配...  相似文献   

6.
Four 3d-4f heterometallic complexes, [CuⅡ LnⅢ (bpt) 2 (NO 3 ) 3 (MeOH)] (Ln = Gd, 1; Dy, 2; bptH = 3,5-bis(pyrid-2-yl)-1,2,4- triazole), [CuⅡ 2 LnⅢ 2 (μ-OH) 2 (bpt) 4 Cl 4 (H 2 O) 2 ]·6H 2 O (Ln = Gd, 3; Dy, 4), have been synthesized under solvothermal conditions. X-ray structural analyses reveal that 1 and 2 are isostructural while 3 and 4 are isostructural. In each complex, the copper and gadolinium or dysprosium ions are linked by two triazolate bridges and form a CuⅡ -LnⅢ dinuclear unit. The intramolecular Cu-Ln distances are 4.542, 4.525, 4.545 and 4.538 for 1, 2, 3 and 4, respectively. Two dinuclear CuLn units are bridged by two OH- groups into the zig-zag tetranuclear {CuⅡ 2 LnⅢ 2 } structures with the Ln(Ⅲ) Ln(Ⅲ) distances of 3.742 and 3.684 for 3 and 4, respectively. Magnetic studies show that the antiferromagnetic CuⅡ-LnⅢ interactions occur in 1 (J CuGd = 0.21 cm-1 ) and 2. The antiferromagnetic interaction occurs in complex 3 with J CuGd = 0.82 cm-1 and J GdGd = 0.065 cm-1 , while dominant ferromagnetic interaction occurs in complex 4.  相似文献   

7.
The reactions of the octahedral anionic complexes [Re6Q7Br7]3? (Q = S, Se) with lanthanide bromides in DMF were studied. The reactions gave a series of compounds [Ln(DMF)8][Re6Q7Br7] (Q = S, Se) containing [Ln(DMF)8]3+ complex cations. The compounds were studied by single-crystal and powder X-ray diffraction and thermal analyses. The crystal structures of [Ln(DMF)8][Re6S7Br7] with Ln = La (I), Ce (II), Nd (III), Eu (IV), and Lu (V) and [Ln(DMF)8][Re6Se7Br7] with Ln = La (VI), Ce (VII), Pr (VIII), and Lu (IX) were determined. It was found that [Ln(DMF)8][Re6Q7Br7] (Q = S, Se) can be divided into three structural groups: I, II, and VI (type A), VII (type B), and III–V, VIII, IX (type C). The complex [Pr(DMF)8][Re6Se7Br7] was found to crystallize in two polymorphous modifications with type B and C structures. Presumably, the morphotropic transitions in the [Ln(DMF)8][Re6Q7Br7] series (Q = S, Se) are mainly related to the change in the configuration of the [Ln(DMF)8]3+ cations, resulting in a change in the packing motif of large complex ions in the crystals. The compounds [Ln(DMF)8][Re6Se7Br7] decompose according to a stepwise pattern, which suggests an intermediate formation of the complexes [Ln(DMF)6][Re6Se7Br7] (this was proved for Ln = Yb, Lu) with subsequent more extensive transformations, which affect also the cluster anion.  相似文献   

8.
Earlier NMR spectra of lanthanide complexes [Ln(18-crown-6)(NO3)3] have been analyzed by us (Babailov in Inorg Chem 51(3):1427–1433, 2012), where Ln3+ = La3+ (I), Ce3+ (II), Pr3+ (III) and Nd3+ (IV). The NMR signal assignment and conformational molecular dynamic have been found by 1D NOE and relaxation spectroscopy as well as on 2D NOESY and EXSY experiments at 170 K. In the present paper the 1H NMR method is used to study the features of paramagnetic properties of complexes IIV and [Eu(18-crown-6)(NO3)3] (V) at ambient temperature. The investigation was carried out by special method based on analysis of Δδ/z> on k(Ln)/z> (where k(Ln) is Bleaney’s constant, Δδ is paramagnetic contribution to the lanthanide-induced shifts). The obtained results indicate that the structure of the complexes (in CDCl3 and CD2Cl2) are very similar.  相似文献   

9.
New rare-earth cymantrenecarboxylate complexes [Ln2(μ,η2-O2CCym)22-O2CCym)2-(η2-O2CCym)2(DMSO)4] (Cym = (η5-C5H4)Mn(CO)3, Ln = Ce (1), Nd (2), Eu (3), Gd (4)) were synthesized and characterized by X-ray diffraction. In dimeric structures 1–4, two of four bridging carboxylates are chelating-bridging, and Ln atoms have coordination number 9. The catalytic activity of complex 2 in the polymerization of 2,3-dimethyl-1,3-butadiene was investigated. The thermal decomposition of the synthesized compounds was studied by DSC and TGA. According to the X-ray powder diffraction data, the final thermal decomposition product of 1 in air consists of CeO2 and Mn3O4. Under the same conditions, complexes 2–4 afford mixtures of LnMn2O5 and Mn2O3.  相似文献   

10.
The synthesis and results of IR spectroscopy and X-ray diffraction analysis of new complexes of biurete NH2CONHCONH2 (BU) with the composition LnCl3 · 2BU · 4H2O, where Ln = La (I), Pr (II), Ho (III), Er (IV), and Lu (V), are presented. Crystals of complexes I–V include complex cations [Ln(H2O)4(BU)2]3+ and uncoordinated chloride ions. The coordination mode of biurete molecules is bidentate through the oxygen atoms, and upon coordination the BU molecules are transformed from the initial trans to cis configuration. Water molecules are also coordinated through the oxygen atom (the shape of the polyhedron of the Ln atoms is a two-capped trigonal prism). The oxygen atoms of both BU molecules and the oxygen atoms of the first and second water molecules form a trigonal prism, whereas the oxygen atoms of the third and fourth water molecules form two caps of the coordination polyhedron. The coordinated BU molecules are joined with the chloride ions and water molecules of the adjacent complex cations by hydrogen bonds. The degree of conversion of trans-BU to cis-BU in the lanthanide series of complexes of this type is discussed.  相似文献   

11.
A series of neutral bimetallic lanthanide aryloxides p-C6H4[OLnL(THF)n]2 [Ln = Y(1), Yb(2), Sm(3)(n = 1) and La(4)(n = 2), L = Me2NCH2CH2N{CH2-(2-O–C6H2–tBu2-3,5)}2] and alkoxides p-C6H4CH2[OLnL(THF)]2 [Ln = Y(5), Yb(6)] supported by an amine-bridged bis(phenolate) ligand have been synthesized through one-pot reactions of Ln(C5H5)3(THF), LH2 with p-benzenediol and 1,4-benzenedimethanol, respectively. All complexes have been fully characterized by elemental analyses, single-crystal X-ray diffraction analysis, and IR and multi-nuclear NMR spectroscopy(in the cases of 1, 4 and 5). Study of their catalytic behavior revealed that, in general, all complexes are efficient initiators for the polymerization of rac-lactide(LA) and rac-β-butyrolactone(BBL), except for 3 and 4 in the case of BBL. The influence imposed by lanthanides of different ionic radii and initiating groups of different structures on the activity, controllability, and stereoselectivity of polymerization were systematically studied and compared. Highly heterotactic PLA(Pr up to 0.99) and syndiotactic PHB(Pr ≈ 0.81) with high molecular weight and narrow polydispersity formed and were automatically capped with hydroxyl functionality at both ends.  相似文献   

12.
Two complexes of formulas [Zn(Hfac)2(IM-IMH-Bph)] (I) and [Co(Hfac)3](IM-Bph) (II), where IM-Bph = 2,2′-bis(1′-oxyl-4′,4′,5′,5′-tetramethylimidazoline-2′-yl)-bis(2-formylphenyl) ether; Hfac = hexafluoroacetylacetonate, have been synthesized and characterized by single-crystal X-ray diffraction. The X-ray analysis demonstrates that both I and II are mononuclear complexes. In I, each zinc ion is five-coordinated with four oxygen atoms from two Hfac ligands and one oxygen atom from nitroxide. Complex II contains one Co(III) atom with six oxygen atoms from three Hfac ligands and uncoordinated IM-Bph diradical, in which the Co2+ ion and NIT-Bph biradical can undergo the redox reaction.  相似文献   

13.
New Mn(III) complexes with Schiff bases and dicyanamide are synthesized: [Mn(Salpn)N(CN)2] n (two polymorphous modifications, Ia and Ib), {[Mn(5-BrSalen)N(CN)2] · CH3OH} n (II), and [Mn(3-MeOSalen)N(CN)2(H2O)] (III), where SalpnH2 = N,N′-bis(salicylidene)-1,3-diaminopropane, 5-BrSalenH2 = N,N′-bis(5-bromosalicylidene)-1,2-diaminoethane, and 3-MeOSalenH2 = N,N′-bis(3-methoxysalicylidene)-1,2-diaminoethane. Complexes Ia, Ib, and II have the polymer structure in which the dicyanamide anion binds the paramagnetic Mn(III) complexes with the Schiff bases into one-dimensional chains. Unlike them, in complex III the monomer units containing water and the dicyanamide anion as terminal ligands form dimers due to hydrogen bonds. The study of the magnetic properties of complexes Ia and II shows a weak antiferromagnetic interaction between the Mn3+ ions through the dicyanamide bridges in these complexes.  相似文献   

14.
This article reports the synthesis of novel, rare-earth coordination complexes with nicotinic acid. Three compounds with the general formula Ln2[(C5H4NCOO)6(H2O)4] (Ln = Yb, 1; Ln = Gd, 2; Ln = Nd, 3) were prepared from relatively cheap and readily available reactants. Their compositions and structure were characterized by IR spectroscopy and single-crystal X-ray diffraction. The magnetic and thermogravimetric properties were also studied. The complexes consist of centrosymetric, dimeric molecules having all six nicotinato ligands coordinated with the central atom in the bidentate mode. The coordination environment of the Ln3+ for all three compounds is 8. Here we describe the crystal structure of Yb and Gd complexes with nicotinic acid.   相似文献   

15.
The molecular structure of three derivatives ofbis(2- R- 5,5- dimethyl- 3- oxo- 1- oxide pyrrolin- 1- ylidene- 3),where R =CH 3 (@#@5a @#@), C 6H5 (@#@5b @#@), C(CH 3)3 (@#@5c @#@), and of the complex of 5b with copper(II)hexafluoroacetylacetonate [Cu(hfac) 2 (@#@5b @#@)] was investigated by X- ray diffraction analysis in the framework of our studies of the possible tautomeric equilibrium conjugated dinitrone ? nitroxide biradical. The pyrroline rings of the molecules under analysis are planar (rms deviations of atoms are no more than 0.041 å), and the interplanar angles are 32.01(5), 42.84(9), and 51.45(7)? for 5a,5b,and 5c,respectively. It is established that the bond lengths of the C(2)- C(3) =C(3a)- C(2a) fragment are equalized to C(2)- C(3) 1.42 and C(3)- C(3a) 1.40 å. The N→O bond lengths of the nitrone group are within 1.250(4)- 1.282(4) å) [in Cu(hfac)2 (5b)]. The geometrical data obtained do not permit us to make an unambiguous choice between the tautomeric structures. The magnetic susceptibility measurements of the Cu(hfac)2 solid complex (5b) and the absence of paramagnetism in solid compounds 5 indicate that they are diamagnetic.  相似文献   

16.
Five compounds of the composition Ln(2,2′-Bipy)(C4H8NCS2)3 · 0.5CH2Cl2 (Ln = Sm (I), Eu (II), Tb (III), Dy (IV), and Tm (V); 2,2′-Bipy = 2,2′-bipyridine) are synthesized. According to the X-ray diffraction data (CIF file CCDC 986259), the crystal structure of compound I consists of molecules of the mononuclear complex [Sm(2,2′-Bipy)(C4H8NCS2)3] and solvate molecules CH2Cl2 (2 : 1). The coordination polyhedron N2S6 of the Sm atom is a distorted tetragonal antiprism. The X-ray diffraction analysis shows that compounds I–V are isostructural. The magnetic properties of compounds I–V are analyzed in the temperature range from 2 to 300 K. At 300 K compounds I and III are photoluminescent in the visible spectral range. The photoluminescence intensity of compound I considerably exceeds that of complex III.  相似文献   

17.
Heteroligand complexes Tm(L)(iso-Bu2PS2)2(NO3) (L = 2,2′-Bipy (II), Phen (III)) are synthesized. According to the X-ray phase analysis data, complex III is isostructural to mononuclear compound [Dy(Phen)(iso-Bu2PS2)2(NO3)] including, according to the X-ray diffraction data, a coordination polyhedron DyN2O2S4 (distorted dodecahedron). Single crystals of compounds [Ln(2,2′-Bipy)(iso-Bu2PS2)2(NO3)] · C6H6 (Ln = Tm (IV), Tb (V)) are obtained. An X-ray diffraction analysis shows that the crystal structures of these isostructural compounds are formed by molecules of mononuclear complexes [Ln(2,2′-Bipy)(iso-Bu2PS2)2(NO3) and uncoordinated C6H6 molecules. In complexes IV and V, the ligands [Ln(2,2′-Bipy)(iso-Bu2PS 2 ? , and NO 3 ? are bidentate-cyclic. The coordination polyhedron LnN2O2S4 is a distorted dodecahedron. Complexes II and III possess photoluminescence in the visible spectral range (λmax = 478 and 477 nm, respectively).  相似文献   

18.
Three new Cu(II)-Ln(III) heterometallic coordination polymers based on two N-heterocyclic carboxylic ligands, {[LnCu(L1)2(L2)(H2O)2]·mH2O} n (Ln = La(1), Nd(2), Gd(3), m = 2 (for 1), 1 (for 2, 3), H2L1 = quinolinic acid, HL2 = nicotinic acid), have been synthesized and characterized. 1 has a two-dimensional (2D) layer structure with a Schl?fli symbol of (44.62), while complexes 2 and 3 are isostructural and have three-dimensional (3D) structures with a Schl?fli symbol of (3.4.5)2(32.42.52.614.74.83.9)(32.63.7) of 3-nodal net. Magnetic investigations suggest that antiferromagnetic coupling exists between NdIII and CuII in 2, while weak ferromagnetic coupling between GdIII and CuII in 3. The difference of magnetic properties between 2 and 3 has been discussed.  相似文献   

19.
New ferrocenecarboxylates of rare-earth metals, [Ln2(μ-O,η2-OOCFc)22-O,O′-OOCFc)22-NO3)2(DMSO)4] (Ln = Gd (I), Tb (II), and Y (III)) and [Gd2(μ-O,η2-OOCFc)22-OOCFc)4(DMSO)2(H2O)2] · 2DMSO · 2CH2Cl2 (IV), are synthesized and characterized by X-ray diffraction analysis. Unlike all earlier known ferrocenecarboxylates of rare-earth metals, in isostructural compounds I–III the Ln atoms are linked by four bridging carboxyl residues, two of which are chelate-bridging (the coordination number of Ln is 9). Binuclear structure IV is formed by two chelate-bridging carboxylate ligands (the coordination number of Gd is 9). Weak antiferromagnetic and weak ferromagnetic interactions between the Gd atoms are observed in complexes I and IV, respectively. The thermal decomposition of the synthesized compounds is studied by differential scanning calorimetry and thermogravimetry. According to the X-ray diffraction data, the final thermolysis products of the complexes in air are garnets Ln3Fe5O12.  相似文献   

20.
Three one-dimensional metal–nitroxide complexes [Cu(NIT4Py)2(1,4-chdc)] n (1), {[Cu(IM4Py)2(1,4-chdc)(H2O)]·H2O} n (2) and {[Zn(IM4Py)2(1,4-chdc)(H2O)2]·H2O} n (3) (NIT4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, IM4Py = 2-(4′-pyridyl)-4,4,5,5-tetramethylimidazoline-1-oxyl and 1,4-chdc = 1,4-cyclohexanedicarboxylate anion) have been synthesized and characterized structurally as well as magnetically. All three complexes crystallize in neutral one-dimensional chains in which the nitroxide–metal–nitroxide units are linked by linear 1,4-cyclohexanedicarboxylate anions. The 1,4-chdc ligands only present the e,e-trans-configuration in these complexes, although there are both cis- and trans-isomers in the free ligand. Magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the copper atoms and nitroxide radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号