首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
For facilitated genotypic analysis of multiple endocrine neoplasia type 1 (MEN1), a familial syndrome associated with tumors of the parathyroid and neuroendocrine tissues, we developed two screening methods, heteroduplex mutation assay (HMA) and mutation detection gel analysis (MDGA), both based on electrophoretic discrimination of polymerase chain reaction (PCR) products, to detect the mutations. Forty-three genomic DNA samples were used for the evaluation of these techniques. The whole coding region of MEN1 was PCR-amplified with fluorescent primers and then denatured/renatured before electrophoresis on an automated sequencer. 100% of the mutations were detected, subsequently confirmed and identified by sequencing. "Negative" samples were used to evaluate the specificity and reproducibility of the two techniques. The combination of the two methods allows high throughput cost-effective mutation screening which is less laborious than systematic sequencing of the whole coding region of MEN1. Together, these methods provide an efficient screen for MEN1 mutations.  相似文献   

2.
Capillary electrophoresis in combination with fluorescence-based single-strand conformation polymorphism (SSCP) analysis was used to screen for known mutations as well as for unknown mutations. The mutations causing hemochromatosis and thrombogenetic diseases (factor V Leiden mutation and prothrombin mutation) are well defined. Familial hypercholesterolemia is caused by mutations in the low density lipoprotein (LDL) receptor gene. Because the mutations are heterogeneously localized in all 18 exons of the LDL receptor gene, effective screening procedures are necessary. The three well known mutations and 59 of 61 previously characterized mutations in the LDL receptor gene were detected by a distinct abnormal fragment pattern in capillary electrophoresis. The remaining two mutations in the LDL receptor gene showed only slight abnormalities under standard electrophoresis conditions (13 kV, 30 degrees C, 30 min). However, the abnormal pattern could be amplified by increasing the electrophoresis temperature. In all cases, heterozygous and homozygous mutations could clearly be differentiated from wild-type alleles. Because of the high efficiency of mutation detection, capillary electrophoresis in combination with fluorescence-based SSCP analysis would be attractive for the detection of well-defined mutations as well as for the screening of unknown mutations. The accuracy and the degree of automation make this technique well suited for routine genetic diagnosis.  相似文献   

3.
We present a fast detection of M467T, the major mutation causing cystinuria, by capillary electrophoresis version of single-strand conformation polymorphism (SSCP). The DNA fragment (317 bp) carrying the point mutation was amplified by polymerase chain reaction (PCR) on the exon 8 of the SLC3A1 gene, which encodes for the transmembrane glycoprotein rBAT, a part of the active cystine and dibasic amino acids transporter. The complementary strands of the fragment were labeled by fluorescein and TAMRA, respectively. Thus, the electromigration of both strands was recorded independently as a laser-induced fluorescence (LIF) signal, what enabled an effective optimization of separation conditions. The injected sample was denatured by immersing the inlet of the separation capillary into a vial with 0.1 M solution of NaOH prior to analysis. Under optimum conditions, the SSCP analysis in poly(vinyl alcohol) (PVA)-coated silica-fused capillary of an effective length of 15 cm, filled with 4% linear polyacrylamide (LPA) solution, was accomplished in approximately 6 min. The experimentally observed mobility shifts of single-stranded DNA (ssDNA) fragments were compared to the appearance of their calculated two-dimensional conformations using Version 3.0 of MFOLD software. The number of nucleotides involved in the duplex regions of theoretical structures correlates well with their real migration order in the sieving medium.  相似文献   

4.
In this study, we performed high-throughput and precise single nucleotide polymorphism (SNP) typing by fluorescent capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis. A system composed of a multicapillary DNA analyzer, a newly developed sieving matrix, four different colors of fluorescent labels, and a multiplex polymerase chain reaction (PCR) enabled low-cost and highly reliable SNP typing. Moreover, this system enabled the estimation of SNP allele frequencies using pooled DNA samples, which should be beneficial for large-scale association studies. Thus, fluorescent CE-SSCP analysis is a useful method for large-scale SNP typing.  相似文献   

5.
Changes of gel temperature during single-strand conformation polymorphism (SSCP) electrophoresis increase the sensitivity of mutation detection in polymerase chain reaction (PCR) products and significantly reduce the overall time and costs of analysis. Based on these findings, a new method for single nucleotide polymorphism (SNP) and point mutation detection--multitemperature single-strand conformation polymorphism (MSSCP) was devised. In order to control the gel temperature with 0.1 degrees C accuracy during electrophoresis, new equipment was developed. We demonstrated that increasing the gel temperature by 8 degrees C or decreasing it by 10 degrees C from 23 degrees C led to the disappearance of all electrophoretic differences between five alleles of exon 8 of the human p53 gene during the SSCP analysis. The interesting result was the detection of two additional SNPs (out of seven analyzed) in exon 7 of the human PAH gene during a one hour MSSCP electrophoresis. This result is better than that obtained by three classical SSCP analyses of the same samples at different but constant gel temperatures. We advocate the MSSCP technology as a fast, reliable, and cost-effective tool for the screening and preselection stage of genomics surveys, especially when a high variability of the analyzed DNA fragment is expected.  相似文献   

6.
A high-density 384-lane microfabricated capillary array electrophoresis device is evaluated for high-throughput single-strand conformation polymorphism (SSCP) analysis. A delayed back bias direct electrokinetic injection scheme is used to provide better than 10-bp resolution with an 8.0-cm effective separation length. Separation of a HaeIII digest of PhiX174 yielded theoretical plate numbers of 4.0 x 10(6). Using 5% PDMA containing 10% glycerol and 15% urea, 21 single-nucleotide polymorphisms (SNPs) from HFE, MYL2, MYL3, and MYH7 genes associated with hereditary hemochromatosis (HHC) and hereditary hypertrophic cardiomyopathy (HCM) are discriminated at two running temperatures (25 degrees C and 40 degrees C), providing 100% sensitivity. The data in this study demonstrate that the 384-lane microCAE device provides the resolution and detection sensitivity required for SSCP analysis, showing its potential for ultrahigh-throughput mutation detection.  相似文献   

7.
Mutation screening is widely used for molecular diagnostics of inherited disorders. Furthermore, it is anticipated that the present and future identification of genetic risk factors for complex disorders will increase the need for high-throughput mutation screening technologies. Capillary array electrophoresis (CAE) SSCP analysis is a low-cost, automated method with a high throughput and high reproducibility. Thus, the method fulfills many of the demands to be met for application in routine molecular diagnostics. However, the need for performing the electrophoresis at three temperatures between 18 degrees C and 35 degrees C for achievement of high sensitivity is a disadvantage of the method. Using a panel of 185 mutant samples, we have analyzed the effect of sample purification, sample medium and separation matrix on the sensitivity of CAE-SSCP analysis to optimize the method for molecular diagnostic use. We observed different effects from sample purification and sample medium at different electrophoresis temperatures, probably reflecting the complex interplay between sequence composition, electrophoresis conditions and sensitivity in SSCP analysis. The effect on assay sensitivity from three different polymers was tested using a single electrophoresis temperature of 27 degrees C. The data suggest that a sensitivity of 98-99% can be obtained using a 10% long chain poly-N,N-dimethylacrylamide polymer.  相似文献   

8.
We present a high-throughput single-strand conformation polymorphism (SSCP) method, performed on a commercially available capillary array DNA sequencer. We tested various sieving matrices and electrophoretic conditions, using 51 DNA fragments which included 45 fragments carrying only one single nucleotide polymorphism (SNP), 4 fragments having two SNPs and 2 fragments with insertion or deletion. Resolution of alleles was improved by increasing concentrations of both sieving matrices and buffers, and all examined polymorphisms of DNA fragments were detected, most of them (45 fragments) as clearly split allele peaks in heterozygotes. Allele frequencies of SNPs can be estimated accurately by determining the relative amounts of alleles in pooled DNA. In this method, the turn-around time for the analysis of 96 samples is less than 3 h. These results demonstrate that capillary array-based SSCP is an efficient and accurate technique for the large-scale quantitative analysis of mutations/polymorphisms.  相似文献   

9.
The polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) technique is developed for the detection of point mutations in DNA samples, and is very useful in the research of tumors. The traditional SSCP was carried out with slab gel electrophoresis (SGE), but this is time-consuming and labor-intensive, particularly for clinical diagnoses. We have developed a capillary electrophoresis (CE) method for SSCP detection with a linear polyacrylamide gel solution as the sieving matrix. Twenty colon tumor samples were detected with SSCP-CE and the point mutation in exon 7 of the p53 gene was found in six of the samples. Based on the sequencing results, the accuracy of SSCP-CE was better than that of SSCP-SGE. We hope this rapid and convenient method could be applied in the clinical diagnosis of tumors soon.  相似文献   

10.
Shi X  Xu G  Zhao C  Ma J  Zhang Y  Lv S  Yang Q 《Electrophoresis》2003,24(14):2316-2321
Mutation of hMLH1 gene plays an important role in human tumorigenesis. A highly sensitive single-strand conformation polymorphism (SSCP) method for detection of the T1151A mutation in exon 12 of the hMLH1 gene was for the first time developed employing laser-induced fluorescence capillary electrophoresis (LIF-CE). Effects of the concentration of linear polyacrylamide solution, running temperature, running voltage and the addition of glycerol on SSCP analysis were investigated, and the optimum separation conditions were defined. Thirty colorectal cancer patients and eight lung cancer patients were screened and the T1151A mutation was found in four of them. Based on CE-sequencing the mutation was further confirmed. To our knowledge, this is for the first time that the T1151A mutation is found in lung cancer. Our method is simple, rapid, and highly sensitive and is well suited to the analysis of large numbers of clinical samples.  相似文献   

11.
Li W  Gao F  Liang J  Li C  Zhang H  Tang Z  Chen L  Jin Q  Tang W 《Electrophoresis》2003,24(14):2283-2289
To explore the relation between DNA base composition and the optimal single-strand conformation polymorphism (SSCP) electrophoretic temperature (T(s)), we analyzed DNA base composition and T(s) of 24 DNA fragments from different genes and found that T(s) was positively correlative with the ratio of base C/base A. T(s) could be estimated by the formula T(s) = [80 x C/(A+1)]/[2.71 + [C/(A+1)]]. T(s) could be increased dramatically by the complementary sequences in both 5'-and 3'-ends of a DNA single-strand.  相似文献   

12.
Polymerase chain reaction (PCR)-coupled single-strand conformation polymorphism (SSCP) approaches utilizing nuclear DNA regions of the small subunit (SSU) of ribosomal RNA and heat shock protein 70 gene (HSP70) were established for genotyping Cryptosporidium parvum. The regions were amplified (individually or in a multiplex reaction) by PCR from DNA extracted from oocysts from ruminant or human hosts, then denatured and subjected to electrophoresis in a mutation detection enhancement (nondenaturing) gel matrix. Single-strand profiles produced in SSCP allowed the unequivocal identification/differentiation of the two common (human, 1 and cattle, 2) genotypes of C. parvum and the direct display of sequence variability within some samples, reflecting population variation. As these are considered among the most closely related genotypes (based on SSU and HSP70 sequence data), these findings and other preliminary results for C. felis (from cat) C. serpentis (from snake) and C. baileyi (from bird) indicate that the SSCP approaches established could be employed to identify any of the currently recognised genotypes and species of Cryptosporidium.  相似文献   

13.
Capillary electrophoresis-single strand conformation polymorphism (CE-SSCP) analysis is a prominent bioseparation method based on the mobility diversity caused by sequence-induced conformational differences of single-stranded DNA. The use of Pluronic polymer matrix has opened up new opportunities for CE-SSCP, because it improved the resolution for various genetic analyses. However, there still exists a challenge in optimizing Pluronic-based CE-SSCP, because the physical properties of Pluronic solutions are sensitive to temperature, particularly near the gelation temperature, where the viscoelasticity of Pluronic F108 solutions sharply changes from that of a Newtonian fluid to a hydrogel upon heating. We have focused on a set of experiments to control the ambient temperature of the CE system with the aim of enhancing the reliability of the CE-SSCP analysis by using the Applied Biosystems ABI 3130xl genetic analyzer with Pluronic F108 solution matrix. The ambient temperature control allowed us to vary the inlet and outlet portion of the capillary column, while the temperature of the column was kept at 35 °C. The resolution to separate 2 single-base-pair-differing DNA fragments was significantly enhanced by changing the temperature from 19 to 30 °C. The viscoelastic properties of the F108 solution matrix upon heating were also investigated by ex situ rheological experiments with an effort to reveal how the development of gels in Pluronic solutions affects the resolution of CE-SSCP. We found that the column inlet and outlet temperatures of the capillary column have to be controlled to optimize the resolution in CE-SSCP by using the Pluronic matrix.  相似文献   

14.
Vahedi G  Kaler K  Backhouse CJ 《Electrophoresis》2004,25(14):2346-2356
This work integrates rapid techniques for mutation detection by producing single-stranded DNA and (renatured) double-stranded DNA on-chip, labeling these with fluorescent DNA stains and then performing two complementary methods of mutation detection-single stranded conformation polymorphism (SSCP) analysis and heteroduplex analysis (HA). This involves the denaturation of double-stranded polymerase chain reaction (PCR) product into single-stranded DNA, the mutation analysis of the single-stranded DNA by SSCP and the rehybridized double-stranded DNA by HA. These steps were performed entirely on-chip within several minutes of operation. The combination of these two mutation detection methods on-chip provides a highly sensitive method of mutation detection for either genotyping or screening. Many mutation analysis methods rely upon fluorescently labeled samples from a PCR with fluorescently labeled primers. By labeling on-chip we not only attain improved signal strength, but the method is considerably more versatile. Although we used PCR products in this work, this method could be used to analyze DNA from any source. We believe that this combination of several procedures on a single chip represents a significant step in the development of higher levels of integration upon microfluidic devices.  相似文献   

15.
We present the rapid single-strand conformation polymorphism (SSCP) analysis by capillary and microchip electrophoresis to detect the mutations in K-ras gene. Parameters that might affect the analysis of mutation in K-ras gene, such as the polymer and the additive in the sieving matrix, have been studied systematically. Under the optimal conditions, the analysis of seven mutants of K-ras gene could be finished within 10 min by capillary electrophoresis (CE). Furthermore, with the wild-type gene as the inner standard, the analysis accuracy of mutations could be improved. In addition, by studying the properties of polymer solutions, the matrix suitable for microchip electrophoresis was found, and the detection of mutations in K-ras gene could be further shortened to 1 min.  相似文献   

16.
H Razzaghi  M I Kamboh 《Electrophoresis》2001,22(13):2665-2669
The single-strand conformation polymorphism (SSCP) method is widely used for mutation detection. The sensitivity of the method depends on several factors, most importantly on the temperature at which electrophoresis of single-stranded DNA (ssDNA) takes place. The temperature has a profound effect on the folded conformation of ssDNA. The temperature factor is predominantly determined empirically in conventional SSCP, which can be very tedious especially when a large number of different DNA samples need to be screened. We have devised a novel SSCP method based on a vertical gradient temperature (VGT), which automatically subjects ssDNA to various temperatures in the same electrophoresis. The theory behind VGT-SSCP protocol is that when ssDNA is subjected to run in a wide range of gradient temperature, it will automatically acquire optimal resolution at an optimal temperature to distinguish between the wild type and the mutant type ssDNA. The sensitivity level of mutation detection of VGT-SSCP depends on whether the corresponding optimal secondary structure of a mutant DNA strand is within the preset gradient temperature range. In summary, the VGT-SSCP is a simple and robust nonradioactive method that is more sensitive than constant-temperature SSCP in detecting unknown mutations.  相似文献   

17.
18.
R B Gasser  X Zhu  W Woods 《Electrophoresis》1999,20(14):2834-2837
To overcome limitations in identifying tapeworms of the genus Taenia by traditional approaches, we have established a single-strand conformation polymorphism (SSCP) method utilizing two different regions of mitochondrial (mt) DNA as targets. The NADH dehydrogenase 1 and the cytochrome c oxidase subunit I genes were amplified from genomic DNA by polymerase chain reaction (PCR), denatured and subjected to electrophoresis in mutation detection enhancement gels. SSCP analysis achieved delineation among eight different species of Taenia from different hosts based on characteristic profiles and enabled the detection of intraspecific variability in profiles for some taxa. This SSCP-based typing method has important implications for taxonomy, diagnosis and for studying the genetic structure of Taenia populations.  相似文献   

19.
A large number of point mutations in the p53 gene have been detected by capillary zone electrophoresis via single-strand conformation polymorphism (SSCP) analysis. A much improved detection sensitivity was obtained via the following modifications in running conditions: use of low-viscosity 3% hydroxyethylcellulose (HEC), a neutral pH (pH 6.8) buffer, in which the standard Tris moiety was substituted with a 2-(N-morpholino)ethanesulfonic acid (MES)/Tris mixture, use of SYBR Green II for improved fluorescent signal at the lower pH adopted; and, finally, the use of a temperature gradient in the 15-25 degrees C interval, for favoring the conformational transitions in the mutated samples. The typical temperature gradient activated had a slope of 2 degrees C/min and were induced externally. A total of 24 samples from affected patients, both in the homo- and heterozygous state, were analyzed. All the mutations could be detected by this improved protocol, raising the sensitivity from the standard ca. 80% of conventional SSCP to essentially 100% with the present methodology. All the mutations were confirmed by sequence analysis of the affected samples.  相似文献   

20.
Mutational analysis of large multiexon genes without prevalent mutations is a laborious undertaking that requires the use of a high-throughput scanning technique. The Human Genome Project has enabled the development of powerful techniques for mutation detection in large multiexon genes. We have transferred heteroduplex analysis (HA) by conformation-sensitive gel electrophoresis of the two major breast cancer (BC) predisposing genes, BRCA1 and BRCA2, to a multicapillary DNA sequencer in order to increase the throughput of this technique. This new method that we have called heteroduplex analysis by capillary array electrophoresis (HA-CAE) is based on the use of multiplex-polymerase chain reaction (PCR), different fluorescent labels and HA in a 16-capillary DNA sequencer. To date, a total of 114 different DNA sequence variants (19 insertions/deletions and 95 single-nucleotide substitutions - SNS) of BRCA1 and BRCA2 from 431 unrelated BC families have been successfully detected by HA-CAE. In addition, we have optimized the multiplex-PCR conditions for the colorectal cancer genes MLH1 and MSH2 in order to analyze them by HA-CAE. Both genes have been amplified in 13 multiplex groups, which contain the 35 exons, and their corresponding flanking intronic sequences. MLH1 and MSH2 have been analyzed in nine hereditary nonpolyposis colorectal cancer patients, and we have found six different DNA changes: one complex deletion/insertion mutation in MLH1 exon 19 and another five SNS. Only the complex mutation and one SNS may be classified as cancer-prone mutations. Our experience has revealed that HA-CAE is a simple, fast, reproducible and sensitive method to scan the sequences of complex genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号