首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This is a short review of the different principles of equivalence stated and used in the context of the gravitational interaction. We emphasize the need for precision in stating and differentiating these different equivalence principles, especially in the context of prevalent confusion regarding the applicability of the weak equivalence principle in quantum mechanics. We discuss several empirical results pertaining to the validity of the equivalence principle in exotic physical sitautions not directly amenable to experimental tests. We conclude with a section on the physical basis of the universal validity of the equivalence principle, as manifest in the universality of free fall, and discuss its link to cosmic gravity.   相似文献   

2.
The role of the equivalence principle in the context of non-relativistic quantum mechanics and matter wave interferometry, especially atom beam interferometry, will be discussed. A generalised form of the weak equivalence principle which is capable of covering quantum phenomena too, will be proposed. It is shown that this generalised equivalence principle is valid for matter wave interferometry and for the dynamics of expectation values. In addition, the use of this equivalence principle makes it possible to determine the structure of the interaction of quantum systems with gravitational and inertial fields. It is also shown that the path of the mean value of the position operator in the case of gravitational interaction does fulfill this generalised equivalence principle.  相似文献   

3.
In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration can equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle.  相似文献   

4.
王谨  詹明生 《物理学报》2018,67(16):160402-160402
等效原理是广义相对论的两个基本假设之一,也是爱因斯坦对弱等效原理的推广.目前,大量实验证明弱等效原理在一定的实验精度内是成立的.将引力与标准模型统一起来的新理论都要求弱等效原理破缺,因此更高精度的弱等效原理检验具有重要的科学意义.本文介绍了原子干涉仪的原理,回顾了利用原子干涉仪开展微观粒子弱等效原理检验实验研究的历史和现状,介绍了双组分原子干涉仪检验弱等效原理实验涉及的振动噪声抑制、拉曼光移频与相位噪声抑制、四波双衍射拉曼跃迁原子干涉、信号探测与数据处理等关键问题及研究进展,分析了高精度微观粒子弱等效原理检验研究的发展趋势,介绍了长基线原子干涉仪、空间原子干涉仪、超冷原子源以及纠缠原子源制备等方面的研究动态,展望了微观粒子弱等效原理检验研究的发展前景.  相似文献   

5.
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics.  相似文献   

6.
No Heading Quantum mechanics and general relativity share an equivalence with respect to the holographic principle. Large-scale fluctuations predicted by the holographic principle may be derived from the quantum mechanics of spin. As holographic theories, quantum mechanics and general relativity in quaternionic bases are formally similar. Gravitation may not be properly quantized and unified with quantum fields in the usual manner, but rather gravitation and Dirac quantum fields as two separate spinor fields that form pairs which define octonions.  相似文献   

7.
8.
Tatsuaki Wada 《Physics letters. A》2011,375(20):2037-2040
Gauss? principle in statistical mechanics is generalized for a q-exponential distribution in nonextensive statistical mechanics. It determines the associated stochastic and statistical nonextensive entropies which satisfy Greene-Callen principle concerning on the equivalence between microcanonical and canonical ensembles.  相似文献   

9.
In previous work it has been shown that the electromagnetic quantum vacuum, or electromagnetic zero‐point field, makes a contribution to the inertial reaction force on an accelerated object. We show that the result for inertial mass can be extended to passive gravitational mass. As a consequence the weak equivalence principle, which equates inertial to passive gravitational mass, appears to be explainable. This in turn leads to a straightforward derivation of the classical Newtonian gravitational force. We call the inertia and gravitation connection with the vacuum fields the quantum vacuum inertia hypothesis . To date only the electromagnetic field has been considered. It remains to extend the hypothesis to the effects of the vacuum fields of the other interactions. We propose an idealized experiment involving a cavity resonator which, in principle, would test the hypothesis for the simple case in which only electromagnetic interactions are involved. This test also suggests a basis for the free parameter η(ν) which we have previously defined to parametrize the interaction between charge and the electromagnetic zero‐point field contributing to the inertial mass of a particle or object.  相似文献   

10.
Nucleon scattering by the classical gravitational field is described by the gravitational (energy-momentum tensor) form factors (GFFs), which also control the partition of nucleon spin between the total angular momenta of quarks and gluons. The equivalence principle (EP) for spin dynamics results in the identically zero anomalous gravitomagnetic moment, which is the straightforward analog of its electromagnetic counterpart. The extended EP (ExEP) describes its (approximate) validity separately for quarks and gluons and, in turn, results in equal partition of the momentum and total angular momentum. It is violated in quantum electrodynamics and perturbative quantum chromodynamics (QCD), but may be restored in nonperturbative QCD because of confinement and spontaneous chiral symmetry breaking, which is supported by models and lattice QCD calculations. It may, in principle, be checked by extracting the generalized parton distributions from hard exclusive processes. The EP for spin-1 hadrons is also manifested in inclusive processes (deep inelastic scattering and the Drell–Yan process) in sum rules for tensor structure functions and parton distributions. The ExEP may originate in either gravity-proof confinement or in the closeness of the GFF to its asymptotic values in relation to the mediocrity principle. The GFFs in time-like regions reveal some similarity between inflation and annihilation.  相似文献   

11.
The problem of the wave function collapse (a problem of measurement in quantum mechanics) is considered. It is shown that it can be solved based on quantum mechanics and does not require any additional assumptions or new theories. The particle creation and annihilation processes, which are described based on quantum field theory, play a key role in the measurement processes. Superposition principle is not valid for the system of equations of quantum field theory for particles and fields, because this system is a non-linear. As a result of the creation (annihilation) of a particle, an additional uncertainty arises, which "smears" the interference pattern. The imposition of such a large number of uncertainties in the repetitive measurements leads to the classical behavior of particles. The decoherence theory also implies the creation and annihilation of particles, and this processes are the consequence of non-linearity of quantum mechanics. In this case, the term "collapse of the wave function" becomes a consequence of the other statements of quantum mechanics instead of a separate postulate of quantum mechanics.  相似文献   

12.
It is shown that the Hamilton's principle in classical mechanics and the Schrödinger equation in quantum mechanics can both be derived from an application of Gauss' principle of least squares.  相似文献   

13.
14.
We theoretically investigate the application of the fringe-locking method(FLM) in the dual-species quantum test of the weak equivalence principle(WEP).With the FLM,the measurement is performed invariably at the midfringe,and the extraction of the phase shift for atom interferometers is linearized.For the simultaneous interferometers,this linearization enables a good common-mode rejection of vibration noise,which is usually the main limit for high precision WEP tests of the dual-species kind.We note that this method also allows for an unbiased determination of the gravity accelerations difference,which meanwhile is ready to be implemented.  相似文献   

15.
Given a quantum mechanical observable and a state, one can construct a classical observable, that is, a real function on the configuration space, such that it is the optimal estimate of the quantum observable, in the sense of minimum variance. This optimal estimate turns out to be the quantum mechanical local value, which arises from several contexts such as de Broglie–Bohm's casual approach to quantum mechanics, instantaneous frequency in time–frequency analysis, Nelson's quantum fluctuations formalism, and phase-space approach to quantum mechanics. Accordingly, any observable can be decomposed into a local value part and a quantum fluctuation part, which are independent, both geometrically and statistically. Furthermore, the current density in quantum mechanics, the osmotic velocity in stochastic mechanics, and the Fisher information in classical statistical inference, arise naturally in connection with local value. In particular, Heisenberg uncertainty principle can be quantified more precisely by virtue of local value.  相似文献   

16.
The previously established equivalence of certain multidimensional quantum hamiltonians is shown to be a consequence of the supersymmetry in quantum mechanics. Thereby the supersymmetric quantum mechanics can serve as a regular source of equivalent quantum systems in arbitrary space dimensions.  相似文献   

17.
No Heading The canonical twin paradox is explained by making a correct use of the principle of equivalence. The role of the principle of equivalence is to provide a physical agent i.e gravity which can supply the required extra aging to the rocket-bound sibling during its acceleration phase through a gravitational time-offset effect. We follow an approach where a novel variation on the twin paradox is used to connect gravity with the desynchronization in the clocks of two spatially distant, identically accelerated observers. It is shown that this approach removes certain drawbacks of an earlier effort which claims to exploit the equivalence principle in explaining the differential aging in the paradox. * Author to whom all correspondences should be made.  相似文献   

18.
The standard argument for the validity of Einstein?s equivalence principle in a non-relativistic quantum context involves the application of a mass superselection rule. The objective of this work is to show that, contrary to widespread opinion, the compatibility between the equivalence principle and quantum mechanics does not depend on the introduction of such a restriction. For this purpose, we develop a formalism based on the extended Galileo group, which allows for a consistent handling of superpositions of different masses, and show that, within such scheme, mass superpositions behave as they should in order to obey the equivalence principle.  相似文献   

19.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

20.
Einsteins equivalence principle has a number of problems, and it is often applied incorrectly. Clocks on the earth do not seem to be affected by the suns gravitational potential. The most commonly accepted reason given is a faulty application of the equivalence principle. While no valid reason is available within either the special or general theories of relativity, ether theories can provide a valid explanation. A clock bias of the correct magnitude and position dependence can convert the Selleri transformation of ether theories into an apparent Lorentz transformation, which gives rise to an apparent equivalence of inertial frames. The results indicate that the special theory is invalid and that only an apparent relativity exists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号