首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper, the discontinuous Galerkin (dG) method is introduced and applied for a problem of nearly incompressible material behavior, where the standard finite element method, namely the conventional continuous Galerkin (cG) method faces the well-known problem of volumetric locking. The highlight of the work lies in the reduced integration scheme for the boundary terms of the dG method. Two different reduced and mixed integration schemes are presented and applied to reduce the calculation time. The dG method converges much faster than standard cG method with respect to the number of the elements, provided that the penalty value is sufficiently large. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
张然 《计算数学》2020,42(1):1-17
本文考虑弱有限元(简称WG)方法在线弹性问题中的应用.WG方法是传统有限元方法的推广,用于偏微分方程的数值求解.和传统有限元一样,它的基本思想源于变分原理.WG方法的特点是使用在剖分单元内部和剖分单元边界上分别有定义的分片多项式函数(即弱函数)作为近似函数来逼近真解,并针对弱函数定义相应的弱微分算子代入数值格式进行计算.除此之外,WG方法允许在数值格式中引进稳定子以实现近似函数的弱连续性.WG方法具有允许使用任意多边形或多面体剖分,数值格式与逼近函数构造简单,易于满足相应的稳定性条件等优点.本文考虑WG方法在求解线弹性问题中的应用.围绕线弹性问题数值求解中常见的三个问题,即:数值格式的强制性,闭锁性,应力张量的对称性介绍WG方法在线弹性问题求解中的应用.  相似文献   

3.
In this study, proper orthogonal decomposition (POD) method is applied to diffusion–convection–reaction equation, which is discretized using space–time discontinuous Galerkin (dG) method. We provide estimates for POD truncation error in dG-energy norm, dG-elliptic projection, and space–time projection. Using these new estimates, we analyze the error between the dG and the POD solution, and the error between the exact and the POD solution. Numerical results, which are consistent with theoretical convergence rates, are presented.  相似文献   

4.
1 IntroductionInrecentyears,theintentionaloraccidentalreleaseofthechemicalwastesonsoilshasfurtherstimulatedcurrentinterestsinthemovementofchemicals.Displacementstudieshavebecomeimportanttoolsinsoilphysics,particularlyforpredictingthemovementofpestcides…  相似文献   

5.
A unified a posteriori error analysis is derived in extension of Carstensen (Numer Math 100:617–637, 2005) and Carstensen and Hu (J Numer Math 107(3):473–502, 2007) for a wide range of discontinuous Galerkin (dG) finite element methods (FEM), applied to the Laplace, Stokes, and Lamé equations. Two abstract assumptions (A1) and (A2) guarantee the reliability of explicit residual-based computable error estimators. The edge jumps are recast via lifting operators to make arguments already established for nonconforming finite element methods available. The resulting reliable error estimate is applied to 16 representative dG FEMs from the literature. The estimate recovers known results as well as provides new bounds to a number of schemes. C. Carstensen and M. Jensen supported by the DFG Research Center MATHEON “Mathematics for key technologies” in Berlin and the Hausdorff Institute of Mathematics in Bonn, Germany. C. Carstensen, T. Gudi, and M. Jensen supported by DST-DAAD (PPP-05) project no. 32307481.  相似文献   

6.
王军平  叶秀  张然 《计算数学》2016,38(3):289-308
本文简述弱有限元方法(weak Galerkin finite element met,hods)的数学基本原理和计算机实现.弱有限元方法对间断函数引入广义弱微分,并将其应用于偏微分方程相应的变分形式进行数值求解,而数值解的弱连续性则通过稳定子或光滑子来实现.弱有限元方法针对广义函数而构建,是经典有限元方法的一种自然拓广,且能够弥补经典有限元方法的某些缺憾,也因此在科学与工程计算领域具有广泛的应用前景.  相似文献   

7.
A Galerkin/least-square finite element formulation (GLS) is used to study mixed displacement-pressure formulation of nearly incompressible elasticity. In order to fully incorporate the effect of the residual-based stabilized term to the weak form, the second derivatives of shape functions were also derived and accounted, which can accurately discretize the residual term and improve the GLS method as well as the Petrov–Galerkin method. The numerical studies show that improved stabilized method can effectively remove volumetric locking problem for incompressible elasticity and stabilize the pressure field for stokes flow. When apply GLS to study material nonlinearity, the derivative of tangent modulus at the integration point will be required. Both advantage and disadvantage of using GLS method for nearly incompressible elasticity/stokes flow were demonstrated.  相似文献   

8.
In this article, we present a new fully discrete finite element nonlinear Galerkin method, which are well suited to the long time integration of the Navier-Stokes equations. Spatial discretization is based on two-grid finite element technique; time discretization is based on Euler explicit scheme with variable time step size. Moreover, we analyse the boundedness, convergence and stability condition of the finite element nonlinear Galerkin method. Our discussion shows that the time step constraints of the method depend only on the coarse grid parameter and the time step constraints of the finite element Galerkin method depend on the fine grid parameter under the same convergence accuracy. Received February 2, 1994 / Revised version received December 6, 1996  相似文献   

9.
O. Schilling  S. Reese 《PAMM》2005,5(1):445-446
Task is the simulation of forming processes using particle methods. We implemented some mesh-free methods (the element free Galerkin method [1] and others) and the finite element method in one programme system which permits a direct comparison. For the mesh-free methods a moving least squares approximation is applied. The shape functions are not zero or one at the nodes, thus essential boundary conditions cannot be imposed directly [2]. We use a penalty method to enforce essential boundary conditions and contact conditions. The contact algorithm (normal contact of nodes to C1-continuous surfaces) is checked by means of the element free Galerkin method and the FEM on the basis of numerical examples which deal with forming processes. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
A method for the simulation of incompressible flows is described which is able to handle geometrically complex situations, such as those including moving and rotating objects in the flow field. In these situations, standard meshbased methods such as the finite element method (FEM) may fail if a suitable mesh can not be maintained at reasonable cost throughout the simulation. The proposed method introduces the desirable features of meshfree methods in parts of the domain where the mesh generates problems. This is realized by coupling FEM and element-free Galerkin (EFG) shape functions. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
Approximate Inertial Manifolds (AIMs) is approached by multilevel finite element method, which can be referred to as a Post-processed nonlinear Galerkin finite element method, and is applied to the model reduction for fluid dynamics, a typical kind of nonlinear continuous dynamic system from viewpoint of nonlinear dynamics. By this method, each unknown variable, namely, velocity and pressure, is divided into two components, that is the large eddy and small eddy components. The interaction between large eddy and small eddy components, which is negligible if standard Galerkin algorithm is used to approach the original governing equations, is considered essentially by AIMs, and consequently a coarse grid finite element space and a fine grid incremental finite element space are introduced to approach the two components. As an example, the flow field of incompressible flows around airfoil is simulated numerically and discussed, and velocity and pressure distributions of the flow field are obtained accurately. The results show that there exists less essential degrees-of-freedom which can dominate the dynamic behaviors of the discretized system in comparison with the traditional methods, and large computing time can be saved by this efficient method. In a sense, the small eddy component can be captured by AIMs with fewer grids, and an accurate result can also be obtained.  相似文献   

12.
In this article we consider the application of Schwarz-type domain decomposition preconditioners to the discontinuous Galerkin finite element approximation of the compressible Navier-Stokes equations. To discretize this system of conservation laws, we exploit the (adjoint consistent) symmetric version of the interior penalty discontinuous Galerkin finite element method. To define the necessary coarse-level solver required for the definition of the proposed preconditioner, we exploit ideas from composite finite element methods, which allow for the definition of finite element schemes on general meshes consisting of polygonal (agglomerated) elements. The practical performance of the proposed preconditioner is demonstrated for a series of viscous test cases in both two- and three-dimensions.  相似文献   

13.
Techniques that improve the accuracy of numerical solutions and reduce their computational costs are discussed as applied to continuum mechanics problems with complex time-varying geometry. The approach combines shock-capturing computations with the following methods: (1) overlapping meshes for specifying complex geometry; (2) elastic arbitrarily moving adaptive meshes for minimizing the approximation errors near shock waves, boundary layers, contact discontinuities, and moving boundaries; (3) matrix-free implementation of efficient iterative and explicit–implicit finite element schemes; (4) balancing viscosity (version of the stabilized Petrov–Galerkin method); (5) exponential adjustment of physical viscosity coefficients; and (6) stepwise correction of solutions for providing their monotonicity and conservativeness.  相似文献   

14.
In this paper a hybridized weak Galerkin(HWG) finite element method for solving the Stokes equations in the primary velocity-pressure formulation is introduced.The WG method uses weak functions and their weak derivatives which are defined as distributions.Weak functions and weak derivatives can be approximated by piecewise polynomials with various degrees.Different combination of polynomial spaces leads to different WG finite element methods,which makes WG methods highly flexible and efficient in practical computation.A Lagrange multiplier is introduced to provide a numerical approximation for certain derivatives of the exact solution.With this new feature,the HWG method can be used to deal with jumps of the functions and their flux easily.Optimal order error estimates are established for the corresponding HWG finite element approximations for both primal variables and the Lagrange multiplier.A Schur complement formulation of the HWG method is derived for implementation purpose.The validity of the theoretical results is demonstrated in numerical tests.  相似文献   

15.
In this paper, we investigate the numerical solution of the three-dimensional (3D) nonlinear tempered fractional integrodifferential equation which is subject to the initial and boundary conditions. The backward Euler (BE) method in association with the first-order convolution quadrature rule is employed to discretize this equation for time, and the Galerkin finite element method is applied for space, which is combined with an alternating direction implicit (ADI) algorithm, in order to reduce the computational cost for solving the three-dimensional nonlocal problem. Then a fully discrete BE ADI Galerkin finite element scheme can be obtained by linearizing the non-linear term. Thereafter we prove a positive-type lemma, from which the stability and convergence of the proposed numerical scheme are derived based on the energy method. Numerical experiments are performed to verify the effectiveness of the proposed approach.  相似文献   

16.
Summary. We study some additive Schwarz algorithms for the version Galerkin boundary element method applied to some weakly singular and hypersingular integral equations of the first kind. Both non-overlapping and overlapping methods are considered. We prove that the condition numbers of the additive Schwarz operators grow at most as independently of h, where p is the degree of the polynomials used in the Galerkin boundary element schemes and h is the mesh size. Thus we show that additive Schwarz methods, which were originally designed for finite element discretisation of differential equations, are also efficient preconditioners for some boundary integral operators, which are non-local operators. Received June 15, 1997 / Revised version received July 7, 1998 / Published online February 17, 2000  相似文献   

17.
A Galerkin method is applied to simple two dimensional equationsimportant in meteorological problems. The construction of thespace of trial functions for the Galerkin method is done usingthe "finite element" method, where the functions are definedas polynomials on individual elements and values are matchedon element boundaries. This method is applied to passive advectionproblems and to a non-linear gravity wave problem. The resultsare compared with those obtained by finite difference methodsand the computation time for given accuracy is shown to be atleast as short using the finite element method as with finitedifferences. Sharp local gradients are especially well handled.Extension of this approach to irregular grids and the possibleuse of higher order polynomials are proposed.  相似文献   

18.
As an improvement of the Meshless Local Petrov–Galerkin (MLPG), the Direct Meshless Local Petrov–Galerkin (DMLPG) method is applied here to the numerical solution of transient heat conduction problem. The new technique is based on direct recoveries of test functionals (local weak forms) from values at nodes without any detour via classical moving least squares (MLS) shape functions. This leads to an absolutely cheaper scheme where the numerical integrations will be done over low–degree polynomials rather than complicated MLS shape functions. This eliminates the main disadvantage of MLS based methods in comparison with finite element methods (FEM), namely the costs of numerical integration.  相似文献   

19.
This paper presents an alternative approach via finite elements to treat numerically the thermal shocks in heat transfer finite element analysis. The method consists in using the standard enriched finite element approaches with time-interpolation. It will be applied here to the transient conduction heat equation where the classical Galerkin method is shown to be unstable. The proposed method consists in adding and eliminating bubbles to the finite element space and then to interpolate the solution to the real time step. This modification is equivalent to the addition of a stabilizing term tuned by a local time-dependent stability parameter, which ensures an oscillating-free solution. To validate this approach, the numerical results obtained in classical 2D and 3D benchmark problems are compared with the Galerkin and the analytical solutions.  相似文献   

20.
In this work linear-quadratic optimal control problems for parabolic equations with mixed control-state constraints are considered. These problems arise when a Lavrentiev regularization is utilized for state constrained linear-quadratic optimal control problems. For the numerical solution a Galerkin discretization is applied utilizing proper orthogonal decomposition (POD). Based on a perturbation method it is determined how far the suboptimal control, computed on the basis of the POD method, is from the (unknown) exact one. Numerical examples illustrate the theoretical results. In particular, the POD Galerkin scheme is applied to a problem with state constraints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号