首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以甲基丙烯酸(MAA)、甲基丙烯酸苄基酯(BZMA)、甲基丙烯酸羟乙酯(HEMA)和丙烯酸正丁酯(BA)为共聚单体,偶氮二异丁腈(AIBN)为引发剂,2-(十二烷基三硫代碳酸酯基)-2-甲基丙酸(DMP)为链转移试剂,采用可逆加成-断裂链转移聚合(RAFT)制备了甲基丙烯酸酯共聚物(PMBBH)。利用傅立叶红外光谱(FT-IR)、核磁共振氢谱(1HNMR)和凝胶渗透色谱(GPC)对共聚物的结构进行了表征。以共聚物PMBBH为基体树脂制备了负性光致抗蚀剂,考察了PMBBH的分子量对光致抗蚀剂分辨率的影响。结果表明,以数均分子量为5.45×103 g/mol,重均分子量为7.79×103 g/mol的PMBBH-2作为基体树脂时,该光致抗蚀剂得到的图像轮廓清晰,图形分辨率可达50 μm。  相似文献   

2.
单羟基聚乙二醇(mPEG)与端羧基链转移剂S-十二烷基-S-′(α,α′-二甲基-α″-乙酸)三硫代碳酸酯[DDMAT(1)]经酯化反应制得大分子链转移剂[mPEG-DDMAT(2)];以2为链转移剂,用AIBN引发1H,1H,2H,2H-全氟癸基丙烯酸酯(FA)的可逆加成-断裂链转移聚合(RAFT),合成了嵌段间强烈不相容的亲水/亲氟双亲嵌段共聚物[mPEG-b-PFA(3a~3k)。3在溶液中的自组装行为研究结果表明,3 f在D2O中PFA聚集形成核,mPEG形成冠层;3 j在正丙醇中自组装得到伸直状的珍珠项链状聚集体。  相似文献   

3.
Summary: The reversible addition–fragmentation chain transfer (RAFT) random copolymerization of N-vinylcarbazole (NVC) and vinyl acetate (VAc) was carried out using s-benzyl-o-ethyl dithiocarbonate (BED) as the chain transfer agent and 2,2′-azoisobutyronitrile (AIBN) as the initiator in 1,4-dioxane solution at 70 °C. The polymerization showed the characteristics of ‘living’ free radical polymerization behaviors: first order kinetics, linear relationships between molecular weight and conversion, and narrow polydispersity of the polymers. The reactivity ratios of NVC and VAc were calculated via the Kelen–Tudos (KT) and non-linear error in variable (EVM) methods and showed as r1 = 1.938 ± 0.191, r2 = 0.116 ± 0.106. The thermal behavior of the copolymers with different content of NVC and VAc was investigated by DSC and TGA. The results showed that the introduction of a VAc segment into copolymer significantly reduced the Tg of the NVC homopolymers. FT-IR spectra, fluorescence spectra, and cyclic voltammetric behavior of these copolymers were also measured and compared with those of NVC homopolymers. The copolymers showed similar oxidative behavior to the NVC homopolymer. However, there was only one reductive potential peak shown for the copolymers at about 0.058 V.  相似文献   

4.
LI  Yongjun  ZHANG  Sen  FENG  Chun  ZHANG  Yaqin  LI  Qingnuan  LI  Wenxin  HUANG  Xiaoyu 《中国化学》2009,27(11):2261-2266
Amphiphilic block copolymers containing hydrophobic perfluorocyclobutyl‐based (PFCB) polyacrylate and hydrophilic poly(ethylene glycol) (PEG) segments were prepared via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The PFCB‐containing acrylate monomer, p‐(2‐(p‐tolyloxy)perfluorocyclobutoxy)‐phenyl acrylate, was first synthesized from commercially available compounds in good yields, and this kind of acrylate monomer can be homopolymerized by free radical polymerization or RAFT polymerization. Kinetic study showed the 2,2′‐azobis(isobutyronitrile) (AIBN) initiated and cumyl dithiobenzoate (CDB) mediated RAFT polymerization was in a living fashion, as suggested by the fact that the number‐average molecular weights (Mn) increased linearly with the conversions of the monomer, while the polydispersity indices kept less than 1.10. The block polymers with narrow molecular weight distributions (Mw/Mn≦1.21) were prepared through RAFT polymerization using PEG monomethyl ether capped with 4‐cyanopentanoic acid dithiobenzoate end group as the macro chain transfer agent (mPEG‐CTA). The length of the hydrophobic segment can be tuned by the feed ratio of the PFCB‐based acrylate monomer and the extending of the polymerization time. The micellization behavior of the block copolymers in aqueous media was investigated by the fluorescence probe technique.  相似文献   

5.
RAFT聚合制备氟硅嵌段共聚物及结构性能   总被引:1,自引:0,他引:1  
以三硫代酯封端的聚二甲基硅氧烷作为大分子链转移剂,通过可逆加成-断裂链转移聚合(RAFT)制备了一系列聚二甲基硅氧烷-b-聚甲基丙烯酸十二氟庚酯(PDMS-b-PDFHMA)二嵌段共聚物.利用凝胶渗透色谱(GPC)、傅里叶变换红外光谱(FT-IR)、氢核磁共振谱(1H-NMR)对该嵌段共聚物的组成、结构和分子量进行了表...  相似文献   

6.
Summary: Means of improving rates in RAFT‐mediated radical emulsion polymerizations are developed, by setting out strategies to minimize the inhibition and retardation that always are present in these systems. These effects arise from the RAFT‐induced exit of radicals, the desorption of the RAFT‐reinitiating radical from the particles, and the specificity of the reinitiating radical to the RAFT agent. Methods for reducing the inhibition period such as using a more hydrophobic reinitiating radical are predicted to show a significant improvement in the inhibition periods. The time‐dependent behavior of the RAFT adduct to the entering radical and the RAFT‐induced exit (loss) of radicals from particles are studied using a previously described Monte Carlo model of RAFT/emulsion particles. It is shown that an effective way of reducing the rate coefficient for the exit of radicals from the particles is to use a less active RAFT agent. Techniques for improving the rate of polymerization of RAFT/emulsion systems are suggested based upon the coherent understanding contained in these models: the use of an oligomeric adduct to the RAFT agent, a less water‐soluble RAFT re‐initiating group, and a less active RAFT agent.

Populations of the different types of particles (left axis) along with the concentration of the initial RAFT agent, DR (right axis), as a function of time.  相似文献   


7.
本文对含氟丙烯酸酯(FMA)与甲基丙烯酸丁酯(BMA)的RAFT细乳液共聚合及动力学进行了研究, 计算得到了FMA与BMA的竞聚率并制备出具有统计结构的含氟共聚物乳液.  相似文献   

8.
研究了以双硫酯为链转移剂进行的均聚和嵌段共聚物的合成。首先合成大分子链转移剂,得到分子量可控、多分散性系数(PDI)较小(<1.30)的均聚物。用末端带有双硫酯基因的PSt,PBMA和PBA为链转移剂,加入第二单体聚合得到分子量可控、且PDI较小的两嵌段聚合物。嵌段聚合时必须加入微量的自由基引发剂以形成大分子自由基,达到较好的控制聚合效果。  相似文献   

9.
Summary: In this study five xanthate (Reversible Addition-Fragmentation chain Transfer (RAFT)/Macromolecular Design through Interchange of Xanthates (MADIX)) agents were synthesized, namely monofunctional, difunctional, trifunctional and tetrafunctional species of the form SC(O-Z)-S-R, with different leaving groups and different activating moieties some of which are completely novel. Polyvinyl acetates (PVAc) in the form of linear, three armed and four armed star shaped polymers were then successfully synthesized in reactions mediated by these xanthate RAFT/MADIX agents.  相似文献   

10.
A series of poly [2-(dimethylamino)ethyl methacrylate (DMA)-sodium acrylate (SA)] diblock copolymers were synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymerization exhibits controlled characters: well-controlled molecular weight, narrow molecular weight distribution, molecular weight increasing with polymerization time. The zwitterionic diblock copolymers show rich solution behaviors. Dynamic light scattering (DLS) indicated the formation of micelles and reverse micelles of copolymers is affected by net charge density of copolymers. Microcalorimetry studies showed that the lower critical solution temperature (LCST) increases with incorporation of hydrophilic segments in buffer.  相似文献   

11.
The syntheses of amphiphilic block copolymers are successfully performed in water by chain extension of hydrophilic macromolecules with styrene at 80 °C. The employed strategy is a one‐pot procedure in which poly(acrylic acid), poly(methacrylic acid) or poly(methacrylic acid‐co‐poly(ethylene oxide) methyl ether methacrylate) macroRAFTs are first formed in water using 4‐cyano‐4‐thiothiopropylsulfanyl pentanoic acid (CTPPA) as a chain transfer agent. The resulting macroRAFTs are then directly used without further purification for the RAFT polymerization of styrene in water in the same reactor. This simple and straightforward strategy leads to a very good control of the resulting amphiphilic block copolymers.

  相似文献   


12.
以3-巯基丙酸、二硫化碳和氯代烃为原料,采用"一锅法"分别合成了两种可逆加成-断裂链转移试剂——3-苄硫基硫代羰基硫基丙酸和3-十二烷硫基硫代羰基硫基丙酸,收率分别为93%和87%。其结构经1HNMR,13C NMR,IR及元素分析表征。  相似文献   

13.
This review summarizes recent advances in the design and synthesis of amino‐acid‐based block copolymers by reversible addition–fragmentation chain transfer (RAFT) polymerization of amino‐acid‐bearing monomers. We will mainly focus on stimuli‐responsive block copolymers, such as pH‐, thermo‐, and dual‐stimuli‐responsive block copolymers, and self‐assembled block copolymers, including amphiphilic and double‐hydrophilic block copolymers having tunable chiroptical properties. We will also highlight recent results in RAFT synthesis of amino‐acid‐based copolymers having various properties, such as catalytic and optoelectronic properties, cross‐linked block copolymer micelles, unimolecular micelles, and organic–inorganic hybrids.  相似文献   

14.
Summary: Reversible addition fragmentation chain transfer (RAFT) polymerization of pentafluorophenyl methacrylate (PFMA) was carried out in the presence of cumyldithiobenzoate and 4‐cyano‐4‐((thiobenzoyl)sulfanyl)pentanoic acid, respectively. These chain transfer agents with 2,2′‐azoisobutyronitrile (AIBN) as initiator yielded the active ester polymer poly(PFMA) with up to 17 000 g · mol−1 and low polydispersity index ( < 1.2). Kinetic analysis using 19F NMR spectroscopy and gel permeation chromatography (GPC) measurements showed controlled polymerization behavior for both chain transfer agents. Successful preparation of linear diblock copolymers consisting of an active ester block and methyl methacrylate, N‐acryloylmorpholine, or N,N‐diethylacrylamide, respectively, could be demonstrated. These polymers could easily react with amines in a polymer analogous reaction to form multifunctional polymers.

  相似文献   


15.
The synthesis of hybrid bioconjugates via the ring‐opening polymerization (ROP) of N‐carboxyanhydrides (NCAs) using a synthetic macroinitiator is described. Poly(n‐butyl acrylate), polystyrene, and poly(N‐isopropyl acrylamide) are synthesized (polydisperity index, Đ < 1.1) using reversible addition–fragmentation chain transfer (RAFT) as the synthetic tool. A phthalimidomethyl trithiocarbonate RAFT chain transfer agent is used to prepare well‐defined, end‐functional polymers, which after deprotection result in amine terminal macroinitiators. The subsequent initiating systems could successfully be chain extended with ε‐benzyloxycarbonyl‐l ‐lysine or γ‐benzyl‐l ‐glutamate as the NCAs to produce a library of polymer–polypeptide conjugates. In doing so, a novel procedure for directly synthesizing bioconjugates via a non‐modular route without the need for excessive purification and isolation steps is described.

  相似文献   


16.
采用三硫代碳酸S-1-十二烷基-S'-(a,a'-二甲基-a"-乙酸)酯(MTTCD)作为链转移剂,偶氮二异丁腈(AIBN)为引发剂,丙烯酸(AA)为第一单体,通过可逆加成-断裂链转移(RAFT)自由基聚合合成大分子链转移剂PAA-MTTCD,以丙烯酸甲酯(MA)为第二单体,合成5种不同嵌段比的两亲性嵌段共聚物聚丙烯酸-b-聚丙烯酸甲酯(PAA-b-PMA).采用FT IR和1H NMR确定了PAA-MTTCD和PAA-b-PMA的结构,用GPC测定了PAA-MTTCD和PAA-b-PMA的分子量及分子量分布.分析了聚合反应动力学,发现该聚合具有活性可控聚合的特征,聚合动力学呈一级线性关系.测定了PAA-b-PMA的乳化性能,并将其作为乳化剂用于丙烯酸丁酯(BA)的乳液聚合中,同时考察了不同嵌段长度共聚物对乳液聚合的影响.结果表明,具有21个AA单元和18个MA单元的两亲性嵌段共聚物具有较好的乳化性能,其作为乳化剂时乳液聚合效果相对最好.  相似文献   

17.
RAFT inverse miniemulsion polymerization is demonstrated for the first time as an alternate way to synthesize hydrophilic polymer latexes. The kinetic behavior of inverse RAFT miniemulsion polymerization of acrylamide is similar to that observed in aqueous RAFT solution polymerization. A water‐soluble initiator provides better control than a lipophilic initiator in inverse RAFT miniemulsion polymerization under the conditions used here.

  相似文献   


18.
19.
可逆加成断裂链转移(RAFT)聚合是最近十多年来发展起来的一种活性/可控技术,链转移剂(CTA)为该技术的核心.本文介绍了采用R路径合成法、Z路径合成法合成R核与Z核树形链转移剂以及它们调控不同单体的RAFT聚合,合成树形-线性二嵌段共聚物、树形-线性-树形三嵌段共聚物和树形-星形聚合物等树枝状聚合物的研究进展.  相似文献   

20.
A new azlactone‐derived trithiocarbonate is prepared and used as a chain‐transfer agent to mediate the reversible addition‐fragmentation chain transfer (RAFT) polymerization of styrene, ethyl acrylate, and N‐isopropyl acrylamide. Well‐defined polymers with controlled molecular weights (M n = 1000–7000 g mol−1) and narrow molecular weight distributions (PDI = 1.05–1.10) are thus obtained that retain the azlactone functionality at the chain end. The ability of the resulting end‐functionalized polymers to react quantitatively at room temperature with a stoichiometric amount of amino groups with retention of the thiocarbonylthio moiety is ascertained by using 4‐fluorobenzylamine and allylamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号