首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The two-dimensional problem of a crack in three-dimensional quasicrystals subject to far field loadings is studied. The analysis is based on the generalized Lekhnitskii's formalism. The analytical expressions for both the entire fields and the asymptotic fields near the crack tip are determined. The fracture quantities of quasicrystals, i.e., field intensity factors, energy release rates and so on, is a prerequisite. Numerical results for a Griffith crack under phason loading Mode I and II conditions are poltted. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
By utilizing the extended Stroh formalism, the Green's function of infinite plane is obtained for the problem of two-dimensional decagonal quasicrystals with the piezoelectric effect subjected to multi-physics loads. By numerical computations, the piezoelectric effect of the two-dimensional decagonal quasicrystals is revealed; the changes of the stress and displacement fields with multi-physics loads are discussed. The variation laws of material constants in stress and displacement fields are investigated. The results show that the effect of the phason field on the generalized displacement is larger than that on the generalized stress; and the effects of material parameters are different in diverse field.  相似文献   

3.
发展了八次对称二维准晶材料的断裂理论.应用Fourier变换与对偶积分方程理论,得到了八次对称二维准晶材料Ⅱ型Griffith裂纹的精确解析解,并由此确定了应力强度因子和应变能释放率,讨论了与相位子场有关结果的物理意义以及晶体与准晶体裂纹问题力学行为的差别,这些为研究此新固体材料的变形和断裂提供了重要的信息.  相似文献   

4.
A Yoffe-type moving crack in one-dimensional hexagonal piezoelectric quasicrystals is considered. The Fourier transform technique is used to solve a moving crack problem under the action of antiplane shear and inplane electric field. Full elastic stresses of phonon and phason fields and electric fields are derived for a crack running with constant speed in the periodic plane. Obtained results show that the coupled elastic fields inside piezoelectric quasicrystals depend on the speed of crack propagation, and exhibit the usual square-root singularity at the moving crack tip. Electric field and phason stresses do not have singularity and electric displacement and phonon stresses have the inverse square-root singularity at the crack tip for a permeable crack. The field intensity factors and energy release rates are obtained in closed form. The crack velocity does not affect the field intensity factors, but alters the dynamic energy release rate. Bifurcation angle of a moving crack in a 1D hexagonal piezoelectric quasicrystal is evaluated from the viewpoint of energy balance. Obtained results are helpful to better understanding crack advance in piezoelectric quasicrystals.  相似文献   

5.
6.
For a one-dimensional (1D) hexagonal quasicrystal (QC), there is the periodic (x1,x2)-plane of atomic structures with the quasiperiodic direction x3-axis along which there exists a phason displacement. The macroscopically collinear periodic cracks and/or rigid line inclusions are placed on the periodic (x1,x2)-plane for finding out the influence of phason displacement on the related physical quantities. These two models are reduced to the Riemann–Hilbert problem of periodic analytic functions to obtain the closed-form solutions for the antiplane sliding mode. It is found that the phonon and phason stress intensity factors of cracks as well as the phonon and phason stress field intensity factors of rigid line inclusions are not related to the coupling of phonon and phason fields. These mean that there is not the influence of phason displacement on both the phonon stress intensity factor (usual stress intensity factor) of cracks and the phonon stress field intensity factor of rigid line inclusions. However, the energy release rates of periodic cracks and/or rigid line inclusions are obtained and affected not only by the periodicity of cracks and/or rigid line inclusions but also by the phason displacement.  相似文献   

7.
The local radial basis function collocation method (LRBFCM) is proposed for plate bending analysis in orthorhombic quasicrystals (QCs) under static and transient dynamic loads. Three common types of the plate bending problems are considered: (1) QC plates resting on Winkler foundation (2) QC plates with variable thickness and (3) QC plates under a transient dynamic load. According to the Reissner–Mindlin plate bending theory, there is allowed to simulate the behavior of the two excitations in QC plates, phonon and phason, by 2D strong formulations for the system of governing equations. The governing equations, which describe the phason displacements, are based on Agiasofitou and Lazar elastodynamic model. Numerical results demonstrate the effect of the elastic foundation, as well as plate thickness on the phonon and phason characteristics in this paper. For the transient dynamic analysis, the influence of the phason friction coefficients on the responses of QC plate to transient dynamic loads is also studied.  相似文献   

8.
The extended displacement discontinuity (EDD) boundary element method is developed to analyze an arbitrarily shaped planar crack in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack face. Green's functions for uniformly distributed EDDs over triangular and rectangular elements for 2D hexagonal QCs are derived. Employing the proposed EDD boundary element method, a rectangular crack is analyzed to verify the Green's functions by discretizing the crack with rectangular and triangular elements. Furthermore, the elliptical crack problem for 2D hexagonal QCs is investigated. Normal, tangential, and thermal loads are applied on the crack face, and the numerical results are presented graphically.  相似文献   

9.
借助经典平面弹性复变函数方法,研究了单个刚性凸基底压头作用下,带任意形状裂纹十次对称二维准晶半平面弹性的无摩擦接触问题.利用十次对称二维准晶位移、应力的复变函数表达式, 带任意形状裂纹的准晶半平面弹性无摩擦接触问题被转换为可解的解析函数复合边值问题,进而简化成一类可解的Riemann边值问题.通过求解Riemann边值问题,得到了应力函数的封闭解, 并给出了裂纹端点处应力强度因子和压头下方准晶体表面任意点处接触应力的显式表达式.从压头下方接触应力的表达式可以看出, 接触应力在压头边缘和裂纹端点处具有奇异性.当忽略相位子场影响时, 该文所得结论与弹性材料对应结果一致.数值算例分别给出了单个平底刚性压头无摩擦压入带单个垂直裂纹和水平裂纹的十次对称二维准晶下半平面的结果.该文所得结论为准晶材料的应用提供了理论参考.  相似文献   

10.
发展了立方准晶的位错弹性理论.通过引入位移势函数,使得立方准晶的反平面弹性动力学问题归结为求解两个波动方程,得到了运动螺型位错的位移场、应力场与能量的解析表达式及运动位错的速度极限.这些为研究此固体材料的塑性变形的物理机理提供了重要的信息.  相似文献   

11.
The meshless local Petrov–Galerkin (MLPG) method is employed for anisotropic transient thermoelasticity analysis of 2D decagonal quasicrystals (QCs) subjected to transient thermal and mechanical shock loadings. The wave type model and the elasto-hydrodynamic model are applied to derive the phonon and phason governing equations, respectively. The temperature affects only the phonon field. To find the temperature distributions on the assumed 2D domain, the anisotropic heat conduction problem is solved using the MLPG method. Also, the MLPG method is successfully employed to obtain the transient behaviors of both phonon and phason displacements by solving the governing equations in local integral equations (LIEs) forms. Making use a unit step function as the test functions in the local weak-form of governing equations, we derived the local integral equations (LIEs) considered on small subdomains identical with support domains of test functions around each node. The radial basis functions are used for approximation of the spatial variation of field variables. The Laplace-transform technique is utilized to discretize the time variations.  相似文献   

12.
文中报道了笔者建议的软物质准晶广义流体动力学的一个应用——软物质准晶圆柱绕流的近似解.人们熟知,在普通流体动力学中, 二维圆柱绕流问题遇到很大的困难,Stokes求解它,未能成功,这就是著名Stokes佯谬.为了克服这一困难, Oseen分析了原因不在边界条件的提法,也不在Stokes的求解,问题出在Navier-Stokes方程, 他对方程进行了修改, 得到了二维绕流问题的有物理意义的近似分析解.本文借助于Oseen的方法讨论12次对称软物质准晶广义流体动力学二维绕流问题.由于问题比普通流体动力学复杂得多,严格的求解,在目前的条件下是根本不可能的.笔者提出一种近似方法——交替程序去构造其零级近似解,并且把该结果用于软物质准晶的位错问题.  相似文献   

13.
An extended displacement discontinuity (EDD) boundary integral equation method is proposed for analysis of arbitrarily shaped planar cracks in two-dimensional (2D) hexagonal quasicrystals (QCs) with thermal effects. The EDDs include the phonon and phason displacement discontinuities and the temperature discontinuity on the crack surface. Green's functions for unit point EDDs in an infinite three-dimensional medium of 2D hexagonal QC are derived using the Hankel transform method. Based on the Green's functions and the superposition theorem, the EDD boundary integral equations for an arbitrarily shaped planar crack in an infinite 2D hexagonal QC body are established. Using the EDD boundary integral equation method, the asymptotic behavior along the crack front is studied and the classical singular index of 1/2 is obtained at the crack edge. The extended stress intensity factors are expressed in terms of the EDDs across crack surfaces. Finally, the energy release rate is obtained using the definitions of the stress intensity factors.  相似文献   

14.
利用广义复变函数方法研究了一维正方准晶材料中周期平面的抛物线裂纹问题,通过建立广义保角映射,将物理平面的抛物线裂纹外映射到数学平面里的单位圆内.得出了声子场和相位子场的应力分量在像平面下的复表示,并且得到了抛物线裂纹尖端的应力强度因子.并在特殊情况下,所得结果与Griffith裂纹的结果一致.  相似文献   

15.
依据一维六方准晶压电材料反平面问题的基本方程,利用复变函数方法,通过引入适当的保角映射,研究了一维六方准晶压电材料中幂函数型曲线裂纹的反平面问题,并利用Cauchy积分理论,得到电不可通和电可通边界条件下的应力场和位移场的复表示以及裂纹尖端场强度因子的解析表达式.  相似文献   

16.
The mathematical theory of elasticity for planar pentagonal quasicrystals is developed and some analytic solutions for a class of mixed boundary-value problems (corresponding to a Griffith crack) of the theory are offered. An alternate procedure and a direct integral approach are proposed. Some analytical solutions are constructed and the stress and displacement fields of a Griffith crack in the quasicrystals are determined. A basis for further studying the mechanical behavior of the material related to planar defects is provided. Project supported by the Foundation of State Education Commission of China for Doctorate Station.  相似文献   

17.
研究了一维六方准晶双材料中圆孔边不对称共线界面裂纹的反平面问题。利用Stroh公式和复变函数方法得到了声子场和相位子场耦合作用下的复势函数,给出了裂纹尖端应力强度因子和能量释放率的解析表达式。通过数值算例,讨论了圆孔半径和裂纹长度对应力强度因子的影响,以及耦合系数、声子场应力和相位子场应力对能量释放率的影响。结果表明:当圆孔半径不变时,应力强度因子随右裂纹长度的增大趋向稳定值。当相位子场应力取一定值时,能量释放率达到最小值,说明特定的相位子场应力可以抑制裂纹的扩展。  相似文献   

18.
An application of the finite fracture mechanics concept to open-hole plates subject to combined tensile and bending loading is presented. In finite fracture mechanics, the simultaneous satisfaction of both, a stress and an energy criterion, is enforced as a condition for crack initiation. Efficient modeling and closed-form expressions for the dependence of the stress and energy quantities on governing structural and material parameters allow for a comprehensive numerical analysis of the onset of asymmetric crack patterns. The obtained failure load predictions are found to agree well with a cohesive zone model and experimental data from literature. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
The numerical assessment of fracture has gained importance in fields like the safety analysis of technical structures or the hydraulic fracturing process. The modelling technique discussed in this work is the phase field method which introduces an additional scalar field. The smooth phase field distinguishes broken from undamaged material and thus describes cracks in a continuum. The model consists of two coupled partial differential equations - the equation of motion including the constitutive behaviour of the material and a phase field evolution equation. The crack growth follows implicitly from the solution of this system of PDEs. The numerical solution with finite elements can be accelerated with an algorithm that performs computationally extensive tasks on a graphic processing unit (GPU). A numerical example illustrates the capability of the model to reproduce realistic features of dynamic brittle fracture. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The numerical modeling of failure mechanisms in plates and shells due to fracture based on sharp crack discontinuities is extremely demanding and suffers in situations with complex crack topologies. This drawback can be overcome by a diffusive crack modeling, which is based on the introduction of a crack phase field. In this paper, we extend ideas recently outlined in [1, 2] towards the phase field modeling of fracture in dimension-reduced continua with application to Kirchhoff plates and shells. The introduction of history fields, containing the maximum reference energy obtained in history, provides a very transparent representation of the coupled balance equations and allows the construction of an extremely robust operator split technique. The performance of the proposed models is demonstrated by means of representative numerical examples. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号