首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variational approach to the numerical modelling of forced lateral motions of an Euler–Bernoulli elastic beam is developed for a number of linear boundary conditions using the method of integrodifferential relations. A class of linear boundary actions is considered. A family of quadratic functionals, connecting the displacement field of points of the beam with the bending-moment functions in the cross section and the momentum density is proposed. Variational formulations of the original initial-boundary value problem on the motion of the beam are given and the necessary conditions for the functionals introduced to be stationary are analysed. The integral and local quality characteristics of the admissible approximate solutions are determined. The relation between the variational problems, formulated for the beam model, with the classical Hamilton–Ostrogradskii variational principles is demonstrated. An algorithm for constructing approximate systems of ordinary differential equations is developed, the solution of which yields stationary (minimum) values of the functionals introduced on a specified set of displacement fields, moments and momenta. Examples of calculations of the displacements for an elastic beam and an analysis of the quality of the numerical solutions obtained are presented.  相似文献   

2.
In this paper, free vibration analysis of cracked composite beam subjected to coupled bending–torsion loading is presented. The composite beam is assumed to have an open edge crack of length a. A first order shear deformation theory is applied to count for the effect of shear deformations on natural frequencies as well as the effect of coupling in torsion and bending modes of vibration. Governing equations and boundary conditions are derived using Hamilton principle. Local flexibility matrix is used to obtain the additional boundary conditions of the beam in cracked area. After obtaining the governing equations and boundary conditions, generalized differential quadrature (GDQ) method is applied to solve the obtained eigenvalue problem. Finally, some numerical results of beams with various boundary conditions and different fiber orientations are given to show the efficiency of the method. In addition, to study the effect of shear deformations, numerical results of the current model are compared with previously given results in which shear deformations were neglected.  相似文献   

3.
A method based on Green's functions is proposed for the analysis of the steady-state dynamic response of bending-torsion coupled Timoshenko beam subjected to distributed and/or concentrated loadings. Damping effects on the bending and torsional directions are taken into account in the vibration equations. The elastic boundary conditions with bending-torsion coupling and damping effects are derived and the classical boundary conditions can be obtained by setting the values of specific stiffness parameters of the artificial springs. The Laplace transform technology is employed to work out the Green's functions for the beam with arbitrary boundary conditions. The Green's functions are obtained for the beam subject to external lateral force and external torque, respectively. Coupling effects between bending and torsional vibrations of the beam can be studied conveniently through these analytical Green's functions. The direct expressions of the steady-state responses with various loadings are obtained by using the superposition principle. The present Green's functions for the Timoshenko beam can be reduced to those for Euler–Bernoulli beam by setting the values of shear rigidity and rotational inertia. In order to demonstrate the validity of the Green's functions proposed, results obtained for special cases are given for a comparison with those given in the literature and they agree with each other exactly. The influences of external loading frequency and eccentricity on Green's functions of bending-torsion coupled Timoshenko beam are investigated in terms of the numerical results for both simply supported and cantilever beams. Moreover, the symmetric property of the Green's functions and the damping effects on the amplitude of Green's functions of the beam are discussed particularly.  相似文献   

4.
This paper is concerned with the existence, uniqueness and numerical solution of a system of equations modelling the evolution of a quasi-static thermoviscoelastic beam that may be in contact with two rigid obstacles. A finite element approximation is proposed and analysed and some numerical results are given. Work partially supported by the Brazilian institution CNPq.  相似文献   

5.
The results of a theoretical investigation of the state of stress of a cantilever with allowance for deformation anisotropy are presented. Expressions for determining the bending stresses in a beam with a profile having a specific radius of curvature at the support are obtained on the basis of the hypothesis of broken-line (cylindrical) sections. The expressions obtained are extended to the case of a beam made of material with viscoelastic properties. A numerical example is given.Institute of Mechanics of Metal-Polymer Systems, Academy of Sciences of the Belorussian SSR, Gomel'. Translated from Mekhanika Polimerov, No. 3, pp. 453–458, May–June, 1976.  相似文献   

6.
Multistage stochastic programs with continuous underlying distributions involve the obstacle of high-dimensional integrals where the integrands' values again are given by solutions of stochastic programs. A common solution technique consists of discretizing the support of the original distributions leading to scenario trees and corresponding LPs which are – up to a certain size – easy to solve. In order to improve the accuracy of approximation, successive refinements of the support result in rapidly expanding scenario trees and associated LPs. Hence, the solvability of the multistage stochastic program is limited by the numerical solvability of sequences of such expanding LPs. This work describes an algorithmic technique for solving the large-scale LP of refinement ν based on the solutions at the previous ν?1 refinements. Numerical results are presented for practical problem statements within financial applications demonstrating significant speedup (depending on the size of the LP instances).  相似文献   

7.
The problem of minimizing the static deflection of an elastic beam of variable cross-section and fixed volume in the case of free supported and rigidly clamped ends is considered. In the first case it is proved that the solutions obtained earlier, based on the necessary conditions for an extremum, satisfy the sufficient conditions. In the case of clamped ends, which is of the most interest from the point of view of applications, it is proved that the optimum solutions must necessarily have points inside the solution range in which the distribution of the beam thicknesses degenerates to zero (“internal hinges”). A qualitative, analytical and numerical analysis of this phenomenon is given. In particular, in the case of clamped ends for a class of point loads, analytical solutions for which the beam splits into two cantilevers are obtained.  相似文献   

8.
A non-linear semi-coercive beam problem is solved in this article. Suitable numerical methods are presented and their uniform convergence properties with respect to the finite element discretization parameter are proved here. The methods are based on the minimization of the total energy functional, where the descent directions of the functional are searched by solving the linear problems with a beam on bilateral elastic “springs”. The influence of external loads on the convergence properties is also investigated. The effectiveness of the algorithms is illustrated on numerical examples.  相似文献   

9.
Kostin Georgy  Saurin Vasily 《PAMM》2006,6(1):817-818
An approach to modelling and optimization of controlled dynamical systems with distributed elastic and inertial parameters are considered. The general method of integro-differential relations (IDR) for solving a wide class of boundary value problems is developed and criteria of solution quality are proposed [1]. A numerical algorithm for discrete approximation of controlled motions is worked out [2] and applied to design the optimal control low steering an elastic system to the terminal position and minimizing the given objective function [3]. The polynomial control of plane motions of a homogeneous cantilever beam is investigated. The optimal control problem of beam transportation from the initial rest position to given terminal states, in which the full mechanical energy of the system reaches its minimal value, is considered. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
将格栅夹层梁热弯曲等效为微极热弹性梁的受热变形,利用平面微极热弹性理论建立了微极梁受热变形的控制方程组,给出了温度载荷下微极梁的位移表达式.通过胞元能量等效的方法,得到了研究的格栅夹层梁等效微极热弹性梁材料参数.对比了等效微极梁模型和ANSYS有限元软件计算得到的温度载荷下悬臂格栅夹层梁受热弯曲变形的数值结果,两种方法得到的结果非常接近,证明了微极热弹性梁是一种简单有效的模拟格栅夹层梁热变形的等效模型.  相似文献   

11.
An analytical model based on Green’s function method is developed to analyze the temperature distribution and heated regions in a material irradiated by a high-energy laser beam. The model is multi-dimensional, transient and incorporates different types of beam characteristics and boundary conditions. The multi-dimensional integration formulas in the Green’s function solution equation are evaluated using an adaptive numerical integration algorithm. A parametric study is conducted to show the effect of various laser beam parameters and material properties on the laser heating process.  相似文献   

12.
分数积分的一种数值计算方法及其应用   总被引:5,自引:0,他引:5  
提出了一种只需要存储部分历史数据的分数积分的数值计算方法,并给出了误差估计。这种方法可对包含分数积分和分数导数的积分-微分方程进行较长时间的数值计算,克服了存储全部历史数据的困难,并能对计算误差进行控制。作为应用,给出了具有分数导数型本构关系的粘弹性Timoshenko梁的动力学行为研究的控制方程,利用分离变量法讨论梁在简谐激励作用下的动力响应,然后用新提出的数值方法对控制方程进行数值计算,数值计算结果和理论结果进行了比较,它们比较吻合。  相似文献   

13.
A study on the free vibration analysis of Timoshenko beams is presented here. In order to determine natural frequencies of beams, a thick beam element is developed by using isogeometric approach based on Timoshenko beam theory which allows the transverse shear deformation and rotatory inertia effect. Three refinement schemes such as h-, p- and k-refinement are used in the analysis and the identification of shear locking is also conducted by using numerical examples. From numerical results, the present element can produce very accurate values of natural frequencies and the mode shapes due to exact definition of the geometry. With higher order basis functions, there is no shear locking phenomenon in very thin beam situations. Finally, the benchmark tests described in this study are provided as future reference solutions for Timoshenko beam vibration problem.  相似文献   

14.
Kai-Uwe Widany  Rolf Mahnken 《PAMM》2014,14(1):273-274
In numerical simulations with the finite element method the dependency on the mesh – and for time-dependent problems on the time discretization – arises. Adaptive refinements in space (and time) based on goal-oriented error estimation [1] become more and more popular for finite element analyses to balance computational effort and accuracy of the solution. The introduction of a goal quantity of interest defines a dual problem which has to be solved to estimate the error with respect to it. Often such procedures are based on a space-time Galerkin framework for instationary problems [2]. Discretization results in systems of equations in which the unknowns are nodal values. Contrary, in current finite element implementations for path-dependent problems some quantities storing information about the path-dependence are located at the integration points of the finite elements [3], e.g. plastic strains etc. In this contribution we propose an approach – similar to [4] for sensitivity analysis – for the approximation of the dual problem which mainly maintains the structure of current finite element implementations for path-dependent problems. Here, the dual problem is introduced after discretization. A numerical example illustrates the approach. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
对带集中质量,变长度(或速度)轴向运动梁的振动特性采用两种精确方法求解.首先,对变长度轴向运动Euler(欧拉)梁横向自由振动方程进行化简,通过复模态分析得到本征方程,并在有集中质量的边界条件下得到频率方程,用数值方法求解固有频率和模态函数.然后,采用有限元方法建立运动梁自由振动的方程,求解矩阵方程得到复特征值和复特征向量,结合形函数得到复模态位移.最后,将两种方法的计算结果进行了分析和对比.数值算例的结果表明:不同的轴向运动速度和集中质量对变长度轴向运动梁的振动特性有显著影响,两种计算方法的结果接近且均有效.  相似文献   

16.
A variational method is developed for solving friction contact problems, in which the friction obeys Coulomb's of friction law in velocities, and numerical solutions of three-dimensional problems of the contact of a sphere, a cylinder of finite length and a cube with an elastic half-space are constructed. It is established that the maximum frictional forces correspond to a boundary point of the regions of adhesion and slippage. When the number of steps,increase this maximum decreases, and the distribution of the frictional forces becomes smoother. Certain undesirable effects that can arise during numerical implementation of the method – numerical artefacts – are described. These effects can occur in the numerical solution of problems with a different physical content, the mathematical structure of which is similar to the structure of the contact problems investigated, as the artefacts are caused by the presence of unilateral constraints and by the dependence on external effects of the region in which unilateral constraints with an equally sign occur. This problem is solved by an appropriate choice of the load-step zero approximations.  相似文献   

17.
Problems of the controlled motion of an elastic body are considered in the linear theory. Using the method of integrodifferential relations, a family of quadratic functionals is introduced, which define the state of the elastic body, and variational formulations of the initial-boundary-value problem of dynamics are given. Euler's equations and boundary and terminal relations corresponding to them are obtained from the condition for the functionals to be stationary. It is shown that there is a relation between the proposed formulations and the Hamilton variational principle in the case of boundary-value and time-periodic problems of dynamics. A numerical algorithm is developed for finding the motions of an elastic body, based on piecewise-polynomial approximations and a criterion is proposed for estimating the quality of the approximate solutions. An example of the calculation and analysis of the forced transverse motions of a rectilinear beam with a square cross section is given for the three-dimensional model.  相似文献   

18.
In this work, we consider mathematical and numerical approaches to a dynamic contact problem with a highly nonlinear beam, the so-called Gao beam. Its left end is rigidly attached to a supporting device, whereas the other end is constrained to move between two perfectly rigid stops. Thus, the Signorini contact conditions are imposed to its right end and are interpreted as a pair of complementarity conditions. We formulate a time discretization based on a truncated variational formulation. We prove the convergence of numerical trajectories and also derive a new form of energy balance. A fully discrete numerical scheme is implemented to present numerical results.  相似文献   

19.
We consider the machine repair problem in which failed machines balk (do not enter) with a constant probability (1 – b) and renege (leave the queue after entering) according to a negative exponential distribution. A group of identical automatic machines are maintained by R servers which themselves are subject to breakdowns. Failure and service times of the machines, and breakdown and repair times of the servers, are assumed to follow a negative exponential distribution. Each server is subject to breakdown even if no failed machines are in the system. This paper presents a matrix geometric method for deriving the steady-state probabilities, using which various system performance measures that can be obtained. A cost model is developed to determine the optimum number of servers. The minimum expected cost, the optimal number of servers, and various system performance measures are provided based on assumed numerical values given to the system parameters. Also the sensitivity analysis is investigated.  相似文献   

20.
We investigate eigenvalues and eigenvectors of certain linear variational eigenvalue inequalities where the constraints are defined by a convex cone as in [4], [7], [8], [10]-[12], [17]. The eigenvalues of those eigenvalue problems are of interest in connection with bifurcation from the trivial solution of nonlinear variational inequalities. A rather far reaching theory is presented for the case that the cone is given by a finite number of linear inequalities, where an eigensolution corresponds to a (+)-Kuhn-Tucker point of the Rayleigh quotient. Application to an unlaterally supported beam are discussed and numerical results are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号