首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present work deals with the solution of geometrically nonlinear elastic problems solved by the least-squares finite element method (LSFEM). The main goal is to obtain an improved performance and an accurate approximation in particular for lower-order elements. Basis for the mixed element is a first-order stress-displacement formulation resulting from a classical least-squares method. Similar to the ideas in SCHWARZ ET AL. [1] a modified weak form is derived by the introduction of an additional term controlling the stress symmetry condition. The approximation of the unknowns follows the same procedures as for a conventional least-squares method, see e.g. CAI & STARKE [2]. The proposed modified formulation is compared to recently developed classical LSFEMs, in order to show the improvement of performance and accuracy. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This paper is concerned with the implementation and testing of an algorithm for solving constrained least-squares problems. The algorithm is an adaptation to the least-squares case of sequential quadratic programming (SQP) trust-region methods for solving general constrained optimization problems. At each iteration, our local quadratic subproblem includes the use of the Gauss–Newton approximation but also encompasses a structured secant approximation along with tests of when to use this approximation. This method has been tested on a selection of standard problems. The results indicate that, for least-squares problems, the approach taken here is a viable alternative to standard general optimization methods such as the Byrd–Omojokun trust-region method and the Powell damped BFGS line search method.  相似文献   

3.
Tomasz Kozbial 《PAMM》2006,6(1):231-232
In this paper a new wavelet-based approach is presented for solving two-dimensional boundary-value mechanical problems on the example of plate bending. The deflection equation of a bending plate is approximated by two-dimensional Daubechies wavelets using a least-squares Galerkin method. Due to the order of the differential equation in mechanics of plate structures is four, a way to perform the calculations of high order connection coefficients (that is, integrals of products of basis functions with their high order derivatives) is suggested. The implementation of two-dimensional Daubechies scaling functions approximation to plate bending is exhibited numerically in some examples. The results show that this method has good precision and reliability. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
In this paper, the interpolating moving least-squares (IMLS) method is discussed in details. A simpler expression of the approximation function of the IMLS method is obtained. Compared with the moving least-squares (MLS) approximation, the shape function of the IMLS method satisfies the property of Kronecker δ function. Then the meshless method based on the IMLS method can overcome the difficulties of applying the essential boundary conditions. The error estimates of the approximation function and its first and second order derivatives of the IMLS method are presented in n-dimensional space. The theoretical results show that if the weight function is sufficiently smooth and the order of the polynomial basis functions is big enough, the approximation function and its partial derivatives are convergent to the exact values in terms of the maximum radius of the domains of influence of nodes. Then the interpolating element-free Galerkin (IEFG) method based on the IMLS method is presented for potential problems. The advantage of the IEFG method is that the essential boundary conditions can be applied directly and easily. For the purpose of demonstration, some selected numerical examples are given to prove the theories in this paper.  相似文献   

5.
The purpose of this paper is to develop and analyze a least-squares approximation to a first order system. The first order system represents a reformulation of a second order elliptic boundary value problem which may be indefinite and/or nonsymmetric. The approach taken here is novel in that the least-squares functional employed involves a discrete inner product which is related to the inner product in (the Sobolev space of order minus one on ). The use of this inner product results in a method of approximation which is optimal with respect to the required regularity as well as the order of approximation even when applied to problems with low regularity solutions. In addition, the discrete system of equations which needs to be solved in order to compute the resulting approximation is easily preconditioned, thus providing an efficient method for solving the algebraic equations. The preconditioner for this discrete system only requires the construction of preconditioners for standard second order problems, a task which is well understood.

  相似文献   


6.
A successive unconstrained dual optimization (SUDO) method is developed to solve the high order tensors?? best rank-one approximation problems, in the least-squares sense. The constrained dual program of tensors?? rank-one approximation is transformed into a sequence of unconstrained optimization problems, for where a fast gradient method is proposed. We introduce the steepest ascent direction, a initial step length strategy and a backtracking line search rule for each iteration. A proof of the global convergence of the SUDO algorithm is given. Preliminary numerical experiments show that our method outperforms the alternating least squares (ALS) method.  相似文献   

7.
The main goal of this contribution is the solution of geometrically nonlinear problems using the mixed least-squares finite element method (LSFEM). An investigation of a hyperelastic material law based on logarithmic deformation measures is performed. The basis for the proposed LSFEM is a div-grad first-order system consisting of the equilibrium condition and the constitutive equation, see e.g. Cai and Starke [1]. For the interpolation of the solution variables vector-valued Raviart-Thomas functions for the approximation of the stresses and standard Lagrange polynomials for the displacements are used. In order to show the performance of the presented formulations a numerical example is investigated, where we compare the different interpolation combinations used. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In some approximation problems, sampling from the target function can be both expensive and time-consuming. It would be convenient to have a method for indicating where approximation quality is poor, so that generation of new data provides the user with greater accuracy where needed. In this paper, we propose a new adaptive algorithm for radial basis function (RBF) interpolation which aims to assess the local approximation quality, and add or remove points as required to improve the error in the specified region. For Gaussian and multiquadric approximation, we have the flexibility of a shape parameter which we can use to keep the condition number of interpolation matrix at a moderate size. Numerical results for test functions which appear in the literature are given for dimensions 1 and 2, to show that our method performs well. We also give a three-dimensional example from the finance world, since we would like to advertise RBF techniques as useful tools for approximation in the high-dimensional settings one often meets in finance.  相似文献   

9.
We are going to study a simple and effective method for the numerical solution of the closed interface boundary value problem with both discontinuities in the solution and its derivatives. It uses a strong‐form meshfree method based on the moving least squares (MLS) approximation. In this method, for the solution of elliptic equation, the second‐order derivatives of the shape functions are needed in constructing the global stiffness matrix. It is well‐known that the calculation of full derivatives of the MLS approximation, especially in high dimensions, is quite costly. In the current work, we apply the diffuse derivatives using an efficient technique. In this technique, we calculate the higher‐order derivatives using the approximation of lower‐order derivatives, instead of calculating directly derivatives. This technique can improve the accuracy of meshfree point collocation method for interface problems with nonhomogeneous jump conditions and can efficiently estimate diffuse derivatives of second‐ and higher‐orders using only linear basis functions. To introduce the appropriate discontinuous shape functions in the vicinity of interface, we choose the visibility criterion method that modifies the support of weight function in MLS approximation and leads to an efficient computational procedure for the solution of closed interface problems. The proposed method is applied for elliptic and biharmonic interface problems. For the biharmonic equation, we use a mixed scheme, which replaces this equation by a coupled elliptic system. Also the application of the present method to elasticity equation with discontinuities in the coefficients across a closed interface has been provided. Representative numerical examples demonstrate the accuracy and robustness of the proposed methodology for the closed interface problems. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1031–1053, 2015  相似文献   

10.
A direct finite-element method for computer solutions of compressible potential flow problems is presented. An analysis of least-squares approximation is given, including optimal order estimates for piecewise polynomial approximation spaces. The model problem considered is that of potential flow past a cylinder. Numerical results for the model problem are given for a shock-free subsonic case.  相似文献   

11.
In this work, a corrected smoothed particle hydrodynamics (CSPH) method is proposed and extended to the numerical simulation of transient viscoelastic fluid flows due to that its approximation accuracy in solving the Navier–Stokes equations is higher than that of the smoothed particle hydrodynamics (SPH) method, especially near the boundary of the domain. The CSPH approach comes with the idea of combining the SPH approximation for the interior particles with the modified smoothed particle hydrodynamics (MSPH) method for the exterior particles, this is because that the later method has higher accuracy than the SPH method although it also needs more computational cost. In order to show the validity of CSPH method to simulate unsteady viscoelastic flows problems, the planar shear flow problems, including transient Poiseuille, Couette flow and transient combined Poiseuille and Couette flow for the Oldroyd-B fluid are solved and compared with the analytical and SPH results. Subsequently, the general viscoelastic fluid based on the eXtended Pom–Pom (XPP) model is numerically investigated and the viscoelastic free surface phenomena of impacting drop are simulated by the CSPH for its extended application and the purpose of illustrating the ability of the proposed method. The numerical results are presented and compared with available solutions, which shows a very good agreement. All the numerical results show the higher accuracy and better stability of the CSPH than the SPH, especially for larger Weissenberg numbers.  相似文献   

12.
In this paper a mesh-free method for the treatment of time-independent and time-dependent nonlinear PDEs of second order is presented. The basic idea of the discretization is a local least-squares approximation, similar to the moving least-squares approach in data approximation. However, in our approach the PDE is incorporated as an additional minimization constraint. The discretization leads to a fixed-point problem, which is solved by iteration. Because of the local nature of the method only small dimensional matrix inversions have to be done. The approximation error of the discretization—even on unstructured meshes—is comparable to respective versions of finite elements. As a by-product the method provides an a posteriori measure for the local approximation error. We discuss implementational aspects and present numerical simulations.  相似文献   

13.
We present a mixed finite element based on a modified least-squares formulation for rate-independent elasto-plasticity. Due to kink-like points in the least-squares functional, the first variation is not always continuous and a standard Newton method could fail in order to minimize the least-squares functional. In order to keep the availability of the Newton method, we introduce a modified least-squares approach, which guarantees the continuity of the resulting weak form. Finally, a numerical example is presented to show the applicability and performance. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
We already generalized the Rutishauser—Gragg—Harrod—Reichel algorithm for discrete least-squares polynomial approximation on the real axis to the rational case. In this paper, a new method for discrete least-squares linearized rational approximation on the unit circle is presented. It generalizes the algorithms of Reichel—Ammar—Gragg for discrete least-squares polynomial approximation on the unit circle to the rationale case. The algorithm is fast in the sense that it requires order m computation time where m is the number of data points and is the degree of the approximant. We describe how this algorithm can be implemented in parallel. Examples illustrate the numerical behavior of the algorithm.  相似文献   

15.
The accuracy of standard boundary element methods for elliptic boundary value problems deteriorates if the boundary of the domain contains corners or if the boundary conditions change along the boundary. Here we first investigate the convergence behaviour of standard spline Galerkin approximation on quasi-uniform meshes for boundary integral equations on polygonal domains. It turns out, that the order of convergence depends on some constant describing the singular behaviour of solutions near corner points of the boundary. In order to recover the full order of convergence for the Galerkin approximation we propose the dual singular function method which is often used for improving the accuracy of finite element methods. The theoretical convergence results are confirmed and illustrated by a numerical example.  相似文献   

16.
The article discusses the choice of a basis system of functions for least-squares smoothing of experimental data, using prior statistical information. Extremal problems of optimal basis choosing are stated for various measures of approximation error. A numerical example is considered.Translated from Statisticheskie Metody, pp. 43–55, 1980.  相似文献   

17.
In this paper, we present the least-squares mixed finite element method and investigate superconvergence phenomena for the second order elliptic boundary-value problems over triangulations. On the basis of the L~2-projection and some mixed finite element projections, we obtain the superconvergence result of least-squares mixed finite  相似文献   

18.
Various techniques may be applied to the approximation of the unknown boundary functions involved in the boundary element method (BEM). Several techniques have been examined numerically to find the most efficient. Techniques considered were: Lagrangian polynomials of the zeroth, first and second orders; spline functions; and the novel weighted minimization technique used successfully in the finite difference method (FDM) for arbitrarily irregular meshes. All these approaches have been used in the BEM for the numerical analysis of plates with various boundary conditions.Both coarse and fine grids on the boundary have been assumed. Maximal errors of the deflections of each plate and the bending moments have been found and the effective computer CPU times determined.Analysis of the results showed that, for the same computer time, the greatest accuracy was obtained by the weighted FDM approach. In the case of the Lagrange approximation, higher order polynomials have proved more efficient. The spline technique yielded more accurate results, but with a higher CPU time.Two discretization approaches have been investigated: the least-squares technique and the collocation method. Despite the fact that the simultaneous algebraic equations obtained were not symmetric, the collocation approach has been confirmed as clearly superior to the least-squares technique, because of the amount of computation time used.  相似文献   

19.
当矩阵幂级数的展开式的系数产生微小摄动时,矩阵Padé-型逼近解往往变化很大.本文在矩阵Padé-型逼近研究的基础上,受Brezinski的启发,借助于误差公式和最小二乘法构造了一种稳定性和精确度均有所提高的矩阵Padé-型逼近的新方法,即最小二乘形式的矩阵Padé-型逼近(LSMPTA),并给出了LSMPTA完整的分子和分母行列式表达式.最后,通过数值实例说明了这一方法的有效性.  相似文献   

20.
The focus of this contribution is the solution of hyperelastic problems using the least-squares finite element method (LSFEM). In particular a mixed least-squares finite element formulation is provided and applied on geometrically nonlinear problems. The basis for the element formulation is a div-grad first-order system consisting of the equilibrium condition and the constitutive equation both written in a residual form. An L2-norm is adopted on the residuals leading to a functional depending on displacements and stresses which has to be minimized. Therefore the first variations with respect to both free variables have to be zero. The solution can then be found by applying Newton's Method. For the continuous approximation of the displacements in W1,p with p > 2, standard polynomials are used. Shape functions belonging to a Raviart-Thomas space are applied for the stress interpolation. These vector-valued functions ensure a conforming discretization of the Sobolev space H(div, Ω). Finally the proposed formulation is tested in a numerical example. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号