共查询到20条相似文献,搜索用时 31 毫秒
1.
Phattarin Mora Hannes Schfer Chanchira Jubsilp Sarawut Rimdusit Katharina Koschek 《化学:亚洲杂志》2019,14(23):4129-4139
When dealing with smart polymers, in particular with shape memory polymers, the polymer type and composition specify the overall material properties and in particular the extent of the shape memory effect. Polybenzoxazines as a polymer with high potential for structural applications represent a promising component for materials with both shape memory effect and structurally interesting material properties. This minireview gives insight into how the shape memory effect, in particular the shape recovery event, is influenced by internal factors such as polymer structure, morphology and external factors such as filler addition. 相似文献
2.
3.
4.
形状记忆聚合物(SMPs)是近些年发展起来的一种环境响应型智能材料。在外界刺激驱动下分子内或分子间会发生物化变化,分子结构和形态的改变使形变后的材料在宏观上回复到起始形态。常见的SMPs有聚乙烯、聚氨酯、聚己内酯等,而聚乙烯醇(PVA)的形状记忆效应是在热致型形状记忆凝胶被发现以来才引起人们关注的。由于PVA侧链富含大量羟基,化学活性高、易与官能团进行功能化改性,因此可设计出满足不同驱动方式的分子结构。目前研究者已采用冻融循环、化学或辐射交联、接枝改性及共混复合等多种方法制备了多种刺激源(如温度,溶剂、光、电、微波及超声波等)驱动下的形状记忆聚乙烯醇(SM-PVA)、PVA衍生物及复合材料。本文综述了近年来不同刺激源驱动下SM-PVA的研究进展,阐述了不同材料的结构性能、回复机理及存在的问题,并展望了PVA在该领域的发展和应用前景。 相似文献
5.
D Zhang ML Giese SL Prukop MA Grunlan 《Journal of polymer science. Part A, Polymer chemistry》2011,49(3):754-761
Thermoresponsive shape memory polymers (SMPs) are stimuli-responsive materials that return to their permanent shape from a temporary shape in response to heating. The design of new SMPs which obtain a broader range of properties including mechanical behavior is critical to realize their potential in biomedical as well as industrial and aerospace applications. To tailor the properties of SMPs, "AB networks" comprised of two distinct polymer components have been investigated but are overwhelmingly limited to those in which both components are organic. In this present work, we prepared inorganic-organic SMPs comprised of inorganic polydimethyl-siloxane (PDMS) segments of varying lengths and organic poly(ε-caprolactone) (PCL) segments. PDMS has a particularly low T(g) (-125 °C) which makes it a particularly effective soft segment to tailor the mechanical properties of PCL-based SMPs. The SMPs were prepared via the rapid photocure of solutions of diacrylated PCL(40)-block-PDMS(m)-block-PCL(40) macromers (m = 20, 37, 66 and 130). The resulting inorganic-organic SMP networks exhibited excellent shape fixity and recovery. By changing the PDMS segment length, the thermal, mechanical, and surface properties were systematically altered. 相似文献
6.
基于羧基和环氧基的高反应活性,以甲基丙烯酸缩水甘油醚与乙烯共聚物(PE-GMA),甲基丙烯酸与乙烯共聚物(EAA)为原料,采用熔融共混的方法制备了交联聚烯烃材料。 采用差示扫描量热仪(DSC)和动态热机械分析仪(DMA)研究了其热力学性能及其形状记忆效应。 结果表明,材料具备很宽的熔融温度范围(40~110 ℃)和很宽的晶体尺寸分布。 利用材料晶体温度记忆的特性,成功地实现了材料的双重形状记忆效应,多重形状记忆效应和双向形状记忆效应。 利用石墨烯材料的光热效应,研究了材料的光触发形状记忆效应。 我们提出设计材料本体“温度梯度”的策略,实现了材料在无外力条件下的双向形状记忆效应。 相似文献
7.
聚乳酸基可降解形状记忆聚合物的制备、结构与性能 总被引:1,自引:0,他引:1
以三枝化低不饱和度聚环氧丙烷/聚乳酸两嵌段共聚物(POLA)为原料, 甲苯二异氰酸酯(TDI)交联制备可降解聚环氧丙烷/聚乳酸基聚氨酯(POLA-PU). 通过对POLA共聚物序列结构的调控, 制备了由高模量低断裂伸长率的脆性到低模量高断裂伸长率的韧性POLA-PU可降解形状记忆材料. 由TMA测得POLA-PU的形变温度为96~153 ℃. POLA-PU试样在140 ℃的形状记忆恢复时间不超过20 s. 在200%拉伸形变条件下, POLA-PU的形变固定率在65%~100%之间, 形变回复率均可达100%. 实验表明, 形状记忆行为取决于链的交联密度, 记忆效应归属于不同温度下柔性链的构象熵变化. 降解实验结果表明, 聚乳酸链段的引入赋予了该形状记忆材料良好的降解性能, 且随着聚乳酸含量的降低而下降. 相似文献
8.
《Macromolecular rapid communications》2017,38(7)
Device applications of shape memory polymers demand diverse shape changing geometries, which are currently limited to non‐omnidirectional movement. This restriction originates from traditional thermomechanical programming methods such as uniaxial, biaxial stretching, bending, or compression. A solvent‐modulated programming method is reported to achieve an omnidirectional shape memory behavior. The method utilizes freeze drying of hydrogels of polyethylene glycol networks with a melting transition temperature around 50 °C in their dry state. Such a process creates temporarily fixed macroporosity, which collapses upon heating, leading to significant omnidirectional shrinkage. These shrunken materials can swell in water to form hydrogels again and the omnidirectional programming and recovery can be repeated. The fixity ratio (R f) and recovery ratio (R r) can be maintained at 90% and 98% respectively upon shape memory multicycling. The maximum linear recoverable strain, as limited by the maximum swelling, is ≈90%. Amongst various application potentials, one can envision the fabrication of multiphase composites by taking advantages of the omnidirectional shrinkage from a porous polymer to a denser structure.
9.
近年来,形状记忆聚合物(SMP)的发展取得了明显进步,其自身的优势也得到了充分的展示.形状记忆聚合物是一种刺激响应智能材料,在特定的外部刺激条件下可以根据预先设计的方式改变形状.形状记忆聚合物具有密度低、变形量大、驱动方式丰富、生物相容性好等一系列优势,使其在航空航天、生物医学、仿生工程、电子元件、智能机器人等领域有着巨大的应用潜力.为了更好地适应不同应用和不同领域的需求,形状记忆聚合物的变形模式也在不断地创新,本综述介绍了形状记忆聚合物不同的变形方式及其相关应用的进展,并对形状记忆聚合物面临的挑战和其潜在的研究方向进行了展望. 相似文献
10.
Jalil Morshedian Hossein A. Khonakdar Sorour Rasouli 《Macromolecular theory and simulations》2005,14(7):428-434
Summary: A mechanical model was developed to describe qualitatively and quantitatively the stress‐strain‐time behavior of a prepared shape memory crosslinked polyethylene during hot stretching, stress relaxation under 200% strain at high temperature and strain recovery of the heat shrinkable polymer. The stress‐strain, the stress relaxation and the irrecoverable strain behavior of the model were established by driving the constitutive equation, which could qualitatively represent the behavior of the real material. By choosing significant values for the parameters of the proposed model, an excellent fit was obtained between the experimental behavior of the polymer and that predicted by the model. It was also revealed that the main source responsible for the imperfect recovery of the induced strain observed was the stress relaxation occurring during the stretch holding‐cooling time step.
11.
Thomas Raidt Robin Hoeher Frank Katzenberg Joerg C. Tiller 《Macromolecular rapid communications》2015,36(8):744-749
In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross‐linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x‐iPP is stable for many cycles, x‐sPP ruptures after the first shape‐memory cycle. It is shown by wide‐angle X‐ray scattering (WAXS) experiments that cross‐linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals.
12.
聚合物形状记忆材料作为一种重要的刺激响应材料,近10年内得到了快速的发展,出现了新的分类方向,机理解释、转变结构和应用。在航空航天、传感制动和生物医药等领域展现了优越的性能,研究成果受到了学术和工业上的极大重视,成为当今最富有活力的研究领域之一。本文全面总结了近期国内外学者对聚合物形状记忆材料的研究进展,阐述了聚合物形状记忆材料的记忆机理及分类和功能应用,并探讨了未来的研究前景和方向,以期为聚合物形状记忆材料的研究提供参考。 相似文献
13.
Peiyao Yan Wei Zhao Bowen Zhang Liang Jiang Samuel Petcher Jessica A. Smith Douglas J. Parker Prof. Andrew I. Cooper Prof. Jingxin Lei Dr. Tom Hasell 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(32):13473-13480
The invention of inverse vulcanization provides great opportunities for generating functional polymers directly from elemental sulfur, an industrial by-product. However, unsatisfactory mechanical properties have limited the scope for wider applications of these exciting materials. Here, we report an effective synthesis method that significantly improves mechanical properties of sulfur-polymers and allows control of performance. A linear pre-polymer containing hydroxyl functional group was produced, which could be stored at room temperature for long periods of time. This pre-polymer was then further crosslinked by difunctional isocyanate secondary crosslinker. By adjusting the molar ratio of crosslinking functional groups, the tensile strength was controlled, ranging from 0.14±0.01 MPa to 20.17±2.18 MPa, and strain was varied from 11.85±0.88 % to 51.20±5.75 %. Control of hardness, flexibility, solubility and function of the material were also demonstrated. We were able to produce materials with suitable combination of flexibility and strength, with excellent shape memory function. Combined with the unique dynamic property of S−S bonds, these polymer networks have an attractive, vitrimer-like ability for being reshaped and recycled, despite their crosslinked structures. This new synthesis method could open the door for wider applications of sustainable sulfur-polymers. 相似文献
14.
Peiyao Yan Wei Zhao Bowen Zhang Liang Jiang Samuel Petcher Jessica A. Smith Douglas J. Parker Andrew I. Cooper Jingxin Lei Tom Hasell 《Angewandte Chemie (International ed. in English)》2020,59(32):13371-13378
The invention of inverse vulcanization provides great opportunities for generating functional polymers directly from elemental sulfur, an industrial by‐product. However, unsatisfactory mechanical properties have limited the scope for wider applications of these exciting materials. Here, we report an effective synthesis method that significantly improves mechanical properties of sulfur‐polymers and allows control of performance. A linear pre‐polymer containing hydroxyl functional group was produced, which could be stored at room temperature for long periods of time. This pre‐polymer was then further crosslinked by difunctional isocyanate secondary crosslinker. By adjusting the molar ratio of crosslinking functional groups, the tensile strength was controlled, ranging from 0.14±0.01 MPa to 20.17±2.18 MPa, and strain was varied from 11.85±0.88 % to 51.20±5.75 %. Control of hardness, flexibility, solubility and function of the material were also demonstrated. We were able to produce materials with suitable combination of flexibility and strength, with excellent shape memory function. Combined with the unique dynamic property of S?S bonds, these polymer networks have an attractive, vitrimer‐like ability for being reshaped and recycled, despite their crosslinked structures. This new synthesis method could open the door for wider applications of sustainable sulfur‐polymers. 相似文献
15.
Fluorogel Elastomers with Tunable Transparency,Elasticity, Shape‐Memory,and Antifouling Properties 下载免费PDF全文
Dr. Xi Yao Dr. Stuart S. Dunn Dr. Philseok Kim Meredith Duffy Jack Alvarenga Prof. Joanna Aizenberg 《Angewandte Chemie (International ed. in English)》2014,53(17):4418-4422
Omniphobic fluorogel elastomers were prepared by photocuring perfluorinated acrylates and a perfluoropolyether crosslinker. By tuning either the chemical composition or the temperature that control the crystallinity of the resulting polymer chains, a broad range of optical and mechanical properties of the fluorogel can be achieved. After infusing with fluorinated lubricants, the fluorogels showed excellent resistance to wetting by various liquids and anti‐biofouling behavior, while maintaining cytocompatiblity. 相似文献
16.
17.
作为热门的机器人研究方向,软体机器人通常由软材料制成,具有众多的自由度、能够承受大变形、连续变形和柔顺接触等优势,在微小物体操作和空间受限环境运动等特殊应用领域具有重要的研究价值。其中,液晶弹性体,作为一种最具代表性的智能材料,同时具有液晶各向异性和橡胶弹性,在外界刺激(热、光、电、磁、pH、湿度等)下,其相态或分子结构会产生变化,进而改变液晶基元的排列顺序,从而导致材料本身发生宏观形变,当撤去外界刺激后,液晶弹性体可以恢复到原来的形状。这种独特的双向形状记忆性能使液晶弹性体成为制备软体机器人最适宜的材料之一。目前,根据驱动方式的不同,液晶弹性体软体机器人的研究主要分为热驱动软体机器人、光驱动软体机器人、电驱动软体机器人及其他驱动类型软体机器人,如磁场驱动和湿度驱动液晶弹性体软体机器人等。本文综述了液晶弹性体软体机器人的研究进展,详细介绍了不同驱动方式的液晶弹性体软体机器人体系,并对液晶弹性体软体机器人的发展前景进行了展望。 相似文献
18.
通过弯曲法测量、热循环训练、扫描电镜、X射线衍射等方法,研究了复合稀土对Fe-Mn-Si-Ni-C合金形状记忆效应的影响。研究结果表明,Fe-Mn-Si-Ni-C合金中加入复合稀土,能够明显细化合金的金相组织,显著提高合金的形状记忆效应,并使合金表现出微弱的双程记忆效应。试验结果还表明,第一种训练途径以及加入微量复合稀土是降低应力诱发ε马氏体稳定化行之有效的方法,X射线衍射结果表明,该训练方法有助于提高合金中ε→γ转变的ε逆转变率,对提高合金的记忆性能起积极的作用。 相似文献
19.
Benjamin Heuwers Dominik Quitmann Frank Katzenberg Joerg C. Tiller 《Macromolecular rapid communications》2012,33(18):1517-1522
Lightly cross‐linked natural rubber (NR, cis‐1,4‐polyisoprene) was found to be an exceptional cold programmable shape memory polymer (SMP) with strain storage of up to 1000%. These networks are stabilized by strain‐induced crystals. Here, we explore the influence of mechanical stress applied perpendicular to the elongation direction of the network on the stability of these crystals. We found that the material recovers its original shape at a critical transverse stress. It could be shown that this is due to a disruption of the strain‐stabilizing crystals, which represents a completely new trigger for SMPs. The variation of transverse stress allows tuning of the trigger temperature Ttrig(σ) in a range of 45 to 0 °C, which is the first example of manipulating the transition of a crystal‐stabilized SMP after programming. 相似文献