首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Fractal basin boundaries in a two-degree-of-freedom nonlinear system   总被引:1,自引:0,他引:1  
The final state for nonlinear systems with multiple attractors may become unpredictable as a result of homoclinic or heteroclinic bifurcations. The fractal basin boundaries due to such bifurcations for a four-well, two-degree-of-freedom, nonlinear oscillator under sinusoidal forcing have been studied, based on a theory of homoclinic bifurcation inn-dimensional vector space developed by Palmer. Numerical simulation is used as a means of demonstrating the consequences of the system dynamics when the bifurcations occur, and it is shown that the basin boundaries in the configuration space (x, y) become fractal near the critical value of the heteroclinic bifurcations.  相似文献   

2.
Non-transversal T-points have been recently found in problems from many different fields: electronic circuits, pendula, and laser problems. In this work, we study a model based on the construction of a Poincaré map that describes the behaviour of curves of saddle-node and cusp bifurcations in the vicinity of such a non-transversal T-point. This model is also able to predict, reproduce, and explain the numerical results previously obtained in Chua’s equation.  相似文献   

3.
Local and global bifurcations in the motion of a double pendulum subjected to a follower force have been studied when the follower force and the springs at the joints have structural asymmetries. The bifurcations of the system are examined in the neighborhood of double zero eigenvalues. Applying the center manifold and the normal form theorem to a four-dimensional governing equation, we finally obtain a two-dimensional equation with three unfolding parameters. The local bifurcation boundaries can be obtained for the criteria for the pitchfork and the Hopf bifurcation. The Melnikov theorem is used to find the global bifurcation boundaries for appearance of a homoclinic orbit and coalescence of two limit cycles. Numerical simulation was performed using the original four-dimensional equation to confirm the analytical prediction.  相似文献   

4.
Unlike classical bifurcations, border-collision bifurcations occur when, for example, a fixed point of a continuous, piecewise C 1 map crosses a boundary in state space. Although classical bifurcations have been much studied, border-collision bifurcations are not well understood. This paper considers a particular class of border-collision bifurcations, i.e., border-collision period-doubling bifurcations. We apply a subharmonic perturbation to the bifurcation parameter, which is also known as alternate pacing, and we investigate the response under such pacing near the original bifurcation point. The resulting behavior is characterized quantitatively by a gain, which is the ratio of the response amplitude to the applied perturbation amplitude. The gain in a border-collision period-doubling bifurcation has a qualitatively different dependence on parameters from that of a classical period-doubling bifurcation. Perhaps surprisingly, the differences are more readily apparent if the gain is plotted versus the perturbation amplitude (with the bifurcation parameter fixed) than if plotted versus the bifurcation parameter (with the perturbation amplitude fixed). When this observation is exploited, the gain under alternate pacing provides a useful experimental tool to identify a border-collision period-doubling bifurcation.  相似文献   

5.
张智豪  于潇雁 《力学学报》2022,54(3):778-786
针对机械臂一般操作过程中运动学的非完整特性进行运动规划时没有考虑机械臂与待抓取目标之间的关系与关节的实际特性, 研究了存在关节死区的漂浮基平面三连杆空间机械臂拦截目标前最后阶段的载体无扰动空间规划与控制. 首先根据拉格朗日第二类方程, 建立存在关节死区的载体位姿均不受控的漂浮基平面三连杆空间机械臂的动力学模型, 推导出三连杆空间机械臂反作用零空间的数学模型, 并对反作用零空间进行向量范数约束算法研究; 进而提出了一种具有抗干扰性与高收敛性的非奇异快速终端滑模控制算法实现系统的姿态无扰控制, 该方法采用变系数双幂次趋近率与非奇异快速终端滑模面相结合的方式, 提高系统状态收敛速度与抗干扰性. 为了消除机械臂关节存在的死区特性, 设计了自适应死区补偿器, 通过自适应控制来逼近死区特性的上界, 以消除关节死区对系统带来的影响, 确保跟踪控制的有效执行. 最后基于Lyapunov函数法证明了系统的稳定性, 并通过系统数值仿真结果验证了存在死区情况下机械臂的各关节角跟踪上无反应空间下的期望轨迹的同时载体的姿态处于稳定状态, 验证了所提方法的有效性.   相似文献   

6.
We extend the asymptotic perturbation (AP) method to the studyof a linear partial differential equation with nonlinear boundaryconditions. A relief valve under the combined effects of static anddynamic loadings is considered with the following resonances between thenth linear mode and the external periodic excitation: primaryresonance, subharmonic resonance of order one-half or one-third,superharmonic resonance of order-two or order-three and combinationresonance. The AP method uses two different procedures for thesolutions: introducing an asymptotic temporal rescaling and balancing ofthe harmonic terms with a simple iteration. We obtain amplitude andphase modulation equations and determine external force-response andfrequency-response curves. Stability of steady-state motions is alsoinvestigated. Saddle-node bifurcations of cycles are observed and underappropriate conditions the performance of the relief valve may beunsatisfactory due to the presence of jumps and hysteresis effects inthe system response. Global analysis is used in order to exclude theexistence of modulated motion. The validity of the method is highlightedby comparing approximate solutions with results of the numericalintegration.  相似文献   

7.
State estimation in hydraulic actuators is a fundamental technique for fault detection and it is also a valid tool useful to reduce the installation of sensors. The performance of the linear/linearization based techniques for the state estimation is strongly limited due to hard nonlinearities that characterize hydraulic actuator. One of the most common hard nonlinearities in hydraulic actuator is the dead-zone. This paper focuses on an alternative nonlinear estimation method that is able to fully take into account dead-zone hard nonlinearity and measurement noise. The estimator is based on the state-dependent-Riccati-equation (SDRE). A fifth order nonlinear model is derived and employed for the synthesis of the estimator. Several simulations have been conducted in order to analyse the effect of the dead-zone characteristic on the novel estimator performance, showing comparisons with the largely used extended Kalman filter (EKF). Numerical results demonstrate the effectiveness of SDRE based technique in applications characterized by extended dead-zone for which the EKF method provides poor results.  相似文献   

8.
The study of transient dynamical phenomena near bifurcation thresholds has attracted the interest of many researchers due to the relevance of bifurcations in different physical or biological systems. In the context of saddle-node bifurcations, where two or more fixed points collide annihilating each other, it is known that the dynamics can suffer the so-called delayed transition. This phenomenon emerges when the system spends a lot of time before reaching the remaining stable equilibrium, found after the bifurcation, because of the presence of a saddle-remnant in phase space. Some works have analytically tackled this phenomenon, especially in time-continuous dynamical systems, showing that the time delay, τ, scales according to an inverse square-root power law, τ∼(μμ c )−1/2, as the bifurcation parameter μ, is driven further away from its critical value, μ c . In this work, we first characterize analytically this scaling law using complex variable techniques for a family of one-dimensional maps, called the normal form for the saddle-node bifurcation. We then apply our general analytic results to a single-species ecological model with harvesting given by a unimodal map, characterizing the delayed transition and the scaling law arising due to the constant of harvesting. For both analyzed systems, we show that the numerical results are in perfect agreement with the analytical solutions we are providing. The procedure presented in this work can be used to characterize the scaling laws of one-dimensional discrete dynamical systems with saddle-node bifurcations.  相似文献   

9.
时变小扰动Hamilton系统的Hopf分岔   总被引:2,自引:0,他引:2  
郑吉兵  孟光  谢建华 《力学学报》2001,33(2):215-223
运用Melnikov方法研究了时变小扰动Hamilton系统周期轨道发生Hopf分岔的条件,并将这些条件应用到一类三维时变小扰动非自治系统,数值结果验证了本文理论的正确性,进一步数值积分表明,所研究的系统还存在复杂而有规律的环面分岔行为。  相似文献   

10.
We analyze a second-order, nonlinear delay-differential equation with negative feedback. The characteristic equation for the linear stability of the equilibrium is completely solved, as a function of two parameters describing the strength of the feedback and the damping in the autonomous system. The bifurcations occurring as the linear stability is lost are investigated by the construction of a center manifold: The nature of Hopf bifurcations and more degenerate, higher-codimension bifurcations are explicitly determined.  相似文献   

11.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   

12.
探讨了载体位置和姿态都不受控时,漂浮基空间机械臂在带有关节力矩输出死区及外部干扰情况下轨迹跟踪的控制算法设计问题。死区与外部干扰影响系统的跟踪精度与稳定性。为此引入积分型切换函数,减少外部干扰引起的稳态误差,并利用径向基函数神经网络逼近动力学方程的未知部分,设计了一种积分滑模神经网络控制方案。控制算法的优点是,在死区斜率与边界参数不确定及最优逼近误差上确界未知的条件下,可以利用最优逼近误差、死区及干扰的补偿项来消除影响。李亚普诺夫稳定性分析证明了闭环系统的稳定性,且轨迹跟踪误差将收敛到0的某个小邻域内。仿真算例证实了该控制算法的有效性,实现了空间机械臂的轨迹跟踪控制。  相似文献   

13.
A time-delay model for prey–predator growth with stage-structure is considered. At first, we investigate the stability and Hopf bifurcations by analyzing the distribution of the roots of associated characteristic equation. Then, an explicit formula for determining the stability and the direction of periodic solutions bifurcating from Hopf bifurcations is derived, using the normal form theory and center manifold argument. Finally, some numerical simulations are carried out for supporting the analytic results.  相似文献   

14.
IntroductionTheexistenceofpeakonTWSofanonlinearwaveequationρt =bux 12 [(u2 ±u2 x) ρ] x, ρ =u±uxx ( 1 )wasconsideredbreiflybyP .Rosenau (see [1 ] ) .Eq.( 1 )isfoundby“reshuffling”Hamiltonianoperatorofbi_HamiltionianstructureinKdVandmKdVequation (see [2 ] ) .BecauseEq.( 1 )hasstron…  相似文献   

15.
We investigate the nonlinear response of a clamped-clamped buckled beamto a primary-resonance excitation of its first vibration mode. The beamis subjected to an axial force beyond the critical load of the firstbuckling mode and a transverse harmonic excitation. We solve thenonlinear buckling problem to determine the buckled configurations as afunction of the applied axial load. A Galerkin approximation is used todiscretize the nonlinear partial-differential equation governing themotion of the beam about its buckled configuration and obtain a set ofnonlinearly coupled ordinary-differential equations governing the timeevolution of the response. Single- and multi-mode Galerkinapproximations are used. We found out that using a single-modeapproximation leads to quantitative and qualitative errors in the staticand dynamic behaviors. To investigate the global dynamics, we use ashooting method to integrate the discretized equations and obtainperiodic orbits. The stability and bifurcations of the periodic orbitsare investigated using Floquet theory. The obtained theoretical resultsare in good qualitative agreement with the experimental results obtainedby Kreider and Nayfeh (Nonlinear Dynamics 15, 1998, 155–177.  相似文献   

16.
In this paper, we first give a sufficient condition which assures that a linear differential equation depending on a small parameter admits an exponential dichotomy onR, then we use the result obtained here on exponential dichotomies to investigate the existence of transversal homoclinic orbits of perturbed differential systems in two degenerate cases and obtain a Melnikov-type vector. The results on exponential dichotomies of this paper provide us a tool of proving the transversality of homoclinic orbits in studying degenerate bifurcations.This work is supported by NSF of China.  相似文献   

17.
The non-linear behaviour of a slender beam carrying a lumped mass subjected to principal parametric base excitation is investigated. The dimension of the beam–mass system and the position of the attached mass are so adjusted that the system exhibits 3 : 1 internal resonance. Multi-mode discretization of the governing equation which retains the cubic non-linearities of geometrical and inertial type is carried out using Galerkin’s method. The method of multiple scales is used to reduce the second-order temporal differential equation to a set of first-order differential equations which is then solved numerically to obtain the steady-state response and the stability of the system. The linear first-order perturbation results show new zones of instability due to the presence of internal resonance. For low amplitude of excitation and damping Hopf bifurcations are observed in the trivial steady-state response. The multi-branched non-trivial response curves show turning point, pitch-fork and Hopf bifurcations. Cascade of period and torus doubling, crises as well as the Shilnikov mechanism for chaos are observed. This is the first natural physical system exhibiting a countable infinity of horseshoes in a neighbourhood of the homoclinic orbit.  相似文献   

18.
黏弹性传动带1:3内共振时的周期和混沌运动   总被引:14,自引:0,他引:14  
张伟  温洪波  姚明辉 《力学学报》2004,36(4):443-454
研究了参数激励作用下黏弹性传动带在1:3内共振时的周期解分岔和混沌动力学. 同时考虑传动带的线性外阻尼因素和材料内阻尼因素. 首先建立了具有线性外阻尼情况下的黏弹性传动带平面运动时的非线性动力学方程, 黏弹性材料的本构关系用Kelvin模型描述. 然后考虑黏弹性传动带的横向振动问题, 利用多尺度法和Galerkin离散法得到黏弹性传动带系统在1:3内共振时的平均方程. 最后利用数值模拟方法研究了黏弹性传动带系统的周期振动和混沌动力学, 得到了系统在不同参数下的混沌运动. 数值模拟结果说明黏弹性传动带系统存在周期分岔, 概周期运动及混沌运动.  相似文献   

19.
In this paper, the planar dynamics of a nonlinearly constrained pipe conveying fluid is examined numerically, by considering the full nonlinear equation of motions and a refined trilinear-spring model for the impact constraints—completing the circle of several studies on the subject. The effect of varying system parameters is investigated for the two-degree-of-freedom (N=2) model of the system, followed by less extensive similar investigations forN=3 and 4. Phase portraits, bifurcation diagrams, power spectra and Lyapunov exponents are presented for a selected set of system parameters, showing some rather interesting, and sometimes unexpected, results. The numerical results are compared with experimental ones obtained previously. It is found that in the parameter space that includesN, there exists a subspace wherein excellent qualitative, and reasonably good (N=2) to excellent (N=4) quantitative agreement with experiment. In the latter case, excellent agreement is not only obtained in the threshold flow velocities (u) for the key bifurcations, but the inclusion of the nonlinear terms improves agreement with experiment in terms of amplitudes of motion and by capturing features of behaviour not hitherto predicted by theory.  相似文献   

20.
This paper studies the dynamics of a maglev system around 1:3 resonant Hopf–Hopf bifurcations. When two pairs of purely imaginary roots exist for the corresponding characteristic equation, the maglev system has an interaction of Hopf–Hopf bifurcations at the intersection of two bifurcation curves in the feedback control parameter and time delay space. The method of multiple time scales is employed to drive the bifurcation equations for the maglev system by expressing complex amplitudes in a combined polar-Cartesian representation. The dynamics behavior in the vicinity of 1:3 resonant Hopf–Hopf bifurcations is studied in terms of the controller’s parameters (time delay and two feedback control gains). Finally, numerical simulations are presented to support the analytical results and demonstrate some interesting phenomena for the maglev system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号