首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
Classical generators of one-dimensional reparametrization, and higher dimensional diffeomorphism symmetries are displayed for the relativistic free particle, relativistic particles in interaction, and general relativity in both Lagrangian and Hamiltonian frameworks. Projectability of these symmetries under the Legendre map is achieved only with dynamical variable-dependent transformations. When gauge symmetries are included, as in Einstein-Yang-Mills and a new reparametrization covariant pre-Maxwell model, pure coordinate symmetries are not projectable. They must be accompanied by internal gauge transformations.  相似文献   

2.
For a theory with first and second class constraints, we propose a procedure for conversion of second class constraints based on deformation the structure of local symmetries of the Lagrangian formulation. It does not require extension or reduction of configuration space of the theory. We give examples in which the initial formulation implies a nonlinear realization of some global symmetries, therefore is not convenient. The conversion reveals hidden symmetry presented in the theory. The extra gauge freedom of conversed version is used to search for a parameterization which linearizes the equations of motion. We apply the above procedure to membrane theory (in the formulation with world-volume metric). In the resulting version, all the metric components are gauge degrees of freedom. The above procedure works also in a theory with only second class constraints presented. As an examples, we discuss arbitrary dynamical system of classical mechanics subject to kinematic constraints, O(N)O(N)-invariant nonlinear sigma-model, and the theory of massive vector field with Maxwell–Proca Lagrangian.  相似文献   

3.
We compute the chiral symmetries of the Lagrangian for confining “vector-like” gauge theories with massless fermions in d-dimensional Minkowski space and, under a few reasonable assumptions, determine the form of the quadratic fermion condensates which arise through spontaneous breaking of these symmetries. We find that for each type (complex, real, or pseudoreal) of representation of the gauge group carried by the fermions, the chiral symmetries of the Lagrangian, as well as the residual symmetries after dynamical breaking, exactly follow the pattern of Bott periodicity as the dimension changes. The consequences of this for the topological features of the low-energy effective theory are considered.  相似文献   

4.
5.
《Physics letters. [Part B]》1987,198(2):165-170
It is shown that the introduction of two-dimensional gauge fields as dynamical degrees of freedom on the world sheet provides a general mechanism for obtaining spontaneous breakdown of spacetime gauge symmetries and supersymmetries in string theories. Other known methods of introducing symmetry breaking are seen to be included in the general world sheet gauge field formulation  相似文献   

6.
The gauge symmetries of a general dynamical system can be systematically obtained following either a Hamiltonian or a Lagrangean approach. In the former case, these symmetries are generated, according to Dirac's conjecture, by the first class constraints. In the latter approach such local symmetries are reflected in the existence of so called gauge identities. The connection between the two becomes apparent, if one works with a first order Lagrangean formulation. Our analysis applies to purely first class systems. We show that Dirac's conjecture applies to first class constraints which are generated in a particular iterative way, regardless of the possible existence of bifurcations or multiple zeroes of these constraints. We illustrate these statements in terms of several examples.  相似文献   

7.
This is a review of the constrained dynamical structure of Poincaré gauge theory which concentrates on the basic canonical and gauge properties of the theory, including the identification of constraints, gauge symmetries and conservation laws. As an interesting example of the general approach, we discuss the teleparallel formulation of general relativity.  相似文献   

8.
9.
The nature of a physical law is examined, and it is suggested that there may not be any fundamental dynamical laws. This explains the intrinsic indeterminism of quantum theory. The probabilities for transition from a given initial state to a final state then depends on the quantum geometry that is determined by symmetries, which may exist as relations between states in the absence of dynamical laws. This enables the experimentally well-confirmed quantum probabilities to be derived from the geometry of Hilbert space and gives rise to effective probabilistic laws. An arrow of time which is consistent with the one given by the second law of thermodynamics, regarded as an effective law, is obtained. Symmetries are used as the basis for a new proposed paradigm of physics. This naturally gives rise to the gravitational and gauge fields from the symmetry group of the standard model and a general procedure for obtaining interactions from any symmetry group.  相似文献   

10.
11.
《Nuclear Physics B》1995,437(1):45-59
Fermions on a cylinder coupled to background gravitation and gauge fields are examined by studying the geometric action associated with the symmetries of such a system. We are able to show that the gauge coupling constant is constrained to a value of 1/N where N is an integer. Furthermore, in direct analogy with a Yang-Mills theory a new gravitational theory is introduced which couples to the fermions by promoting the coadjoint vector of the diffeomorphism sector to a dynamical variable. The classical dynamics of this theory are examined by displaying its symplectic structure and showing that it is equivalent to a one-dimensional system.  相似文献   

12.
We reconsider the role of Lorentz invariance in the dynamical generation of the observed internal symmetries. We argue that, generally, Lorentz invariance can be imposed only in the sense that all Lorentz noninvariant effects caused by the spontaneous breakdown of Lorentz symmetry are physically unobservable. The application of this principle to the most general relativistically invariant Lagrangian, with arbitrary couplings for all the fields involved, leads to the appearance of a symmetry and, what is more, to the massless vector fields gauging this symmetry in both Abelian and non-Abelian cases. In contrast, purely global symmetries are generated only as accidental consequences of the gauge symmetry.  相似文献   

13.
We construct explicitly generators of projectable four-dimensional diffeomorphisms and triad rotation gauge symmetries in a model of vacuum gravity where the fundamental dynamical variables in a Palatini formulation are taken to be a lapse, shift, densitized triad, extrinsic curvature, and the time-like components of the Ricci rotation coefficient. Time-foliation-altering diffeomorphisms are not by themselves projectable under the Legendre transformations. They must be accompanied by a metric- and triad-dependent triad rotation. The phase space on which these generators act includes all of the gauge variables of the model.  相似文献   

14.
Marco Fabbrichesi 《Pramana》2004,62(3):725-727
I discuss the generalization to global gauge anomalies of the familiar procedure for the cancellation of local gauge anomalies in effective theories of spontaneously broken symmetries  相似文献   

15.
In the context of the formalism proposed by Stelle-West and Grignani-Nardelli, it is shown that Chern-Simons supergravity can be consistently obtained as a dimensional reduction of (3 + 1)-dimensional supergravity, when written as a gauge theory of the Poincaré group. The dimensional reductions are consistent with the gauge symmetries, mapping (3 + 1)-dimensional Poincaré supergroup gauge transformations onto (2 + 1)-dimensional Poincaré supergroup ones.  相似文献   

16.
The dynamical breaking of the supergauge symmetries in the massless supergauge Wess Zumino model isdiscussed without adding the Fayet-Iliopoulos term to the Lagrangian. It is shown, in terms of the Nambu-Jona-Lasiniomechanism, that the supersymmetry breaking and the gauge symmetry breaking can be realized dynamically. It is alsoshown that the dynamical breaking moves the vacuum expectation values of two scalar fields away from zero. In order torestore the symmetry of the vacuum, one of the two scalar fields is translated and at the same time the mass spectrumis changed too.  相似文献   

17.
This is the first of a couple of papers in which the peculiar capabilities of the Hamiltonian approach to general relativity are exploited to get both new results concerning specific technical issues, and new insights about old foundational problems of the theory. The first paper includes: (1) a critical analysis of the various concepts of symmetry related to the Einstein-Hilbert Lagrangian viewpoint on the one hand, and to the Hamiltonian viewpoint, on the other. This analysis leads, in particular, to a re-interpretation of active diffeomorphisms as passive and metric-dependent dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose the (not widely known)) connection of a subgroup of them to Hamiltonian gauge transformations on-shell; (2) a re-visitation of the canonical reduction of the ADM formulation of general relativity, with particular emphasis on the geometro-dynamical effects of the gauge-fixing procedure, which amounts to the definition of a global non-inertial, space-time laboratory. This analysis discloses the peculiar dynamical nature that the traditional definition of distant simultaneity and clock-synchronization assume in general relativity, as well as the gauge relatedness of the “conventions” which generalize the classical Einstein's convention. (3) a clarification of the physical role of Dirac and gauge variables, as their being related to tidal-like and generalized inertial effects, respectively. This clarification is mainly due to the fact that, unlike the standard formulations of the equivalence principle, the Hamiltonian formalism allows to define a generalized notion of “force” in general relativity in a natural way.  相似文献   

18.
We discuss a class of lattice gauge theories with fermions that have properties in common with continuum chiral gauge theories. The symmetries we gauge have often been mistaken for chiral symmetries in the literature. We show that in the continuum limit they converge to ordinary vector-like symmetries, but that at strong coupling they behave like chiral symmetries. We find lattice analogs of the technicolor mechanism and of the generation of composite massless fermions in chiral gauge theories.  相似文献   

19.
We find two classes of supersymmetry theories such that after Fermi-field integration and Bose-field transformation the graded partition function reduces to that of a free theory. We study theories with or without gauge symmetries and relate these results with the possibility of dynamical breaking of supersymmetry. Within these theories are N=2 and N=4 Super Yang-Mills.  相似文献   

20.
《Nuclear Physics B》2005,727(3):537-563
We develop the BRST approach to Lagrangian formulation for massive higher integer spin fields on a flat space–time of arbitrary dimension. General procedure of gauge invariant Lagrangian construction describing the dynamics of massive bosonic field with any spin is given. No off-shell constraints on the fields (like tracelessness) and the gauge parameters are imposed. The procedure is based on construction of new representation for the closed algebra generated by the constraints defining an irreducible massive bosonic representation of the Poincaré group. We also construct Lagrangian describing propagation of all massive bosonic fields simultaneously. As an example of the general procedure, we derive the Lagrangians for spin-1, spin-2 and spin-3 fields containing total set of auxiliary fields and gauge symmetries of free massive bosonic higher spin field theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号