首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrate inhibition effect of three kinetic inhibitors (inhibex 301, 501, and 713) was assessed from (CH4 + C2H6 + C3H8) gas mixture + brine systems using a high pressure sapphire cell. The onset time of hydrate formation was determined by visual observation method and pressure drop profile method, respectively. The experimental results demonstrated that the onset time was able to be determined by the visual observation method all the time while the pressure drop profile method failed to detect the onset time clearly and correctly at lower temperatures. In some cases, the initial appearance of hydrate crystals cannot induce a clear break in the pressure–time relationship curve. The onset time measured by the visual observation method is usually shorter than or at least the same as that determined by the pressure drop profile method. The inhibiting effect on the growth of hydrate crystals can be shown by the difference of the onset time obtained by the two methods. The maximum tolerated subcooling of each inhibitor was also investigated based on the onset time. It was found that inhibex 301 behaves as the best inhibitor that can tolerate the maximum subcooling of 8.3 K at 0.5 wt% and 10.6 K at 1.0 wt%, respectively. The maximum subcooling for inhibex 501 is 6.8 K at 0.5 wt% and 6.6 K at 1.0 wt%, respectively. Inhibex 713 has relatively poor inhibiting effect among the three inhibitors with the maximum subcooling of less than 3.5 K at 0.5 wt% and 5.1 K at 1.0 wt%, respectively.  相似文献   

2.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   

3.
The main objective of the present work is enhancement of the performance of gas hydrate kinetic inhibitors in the presence of polyethylene oxide (PEO) and polypropylene oxide (PPO) for simple gas hydrate formation in a flow mini-loop apparatus. PEO and PPO are high molecular weight polymers that are not kinetic inhibitors by their self. For this investigation, a laboratory flow mini-loop apparatus was set up to measure the induction time and rate of gas hydrate formation when a hydrate-forming substance (such as C1, C3, CO2 and i-C4) is contacted with water containing dissolved inhibitor in presence or absence of PEO or PPO under suitable temperature and pressure conditions. In each experiment, water containing inhibitors blend saturated with pure gas is circulated up to a required pressure. Pressure is maintained at a constant value during experimental runs by means of required gas make-up. The effect of PEO and PPO on induction time and gas consumption during hydrate formation is investigated in the presence or absence of PVP (polyvinylpyrrolidone) and l-tyrosine as kinetic inhibitors. Results were shown that the induction time is prolonged in the presence of PEO or PPO compared to the inhibitor only. Inclusion of PPO into a kinetic hydrate inhibitor solution shows a higher enhancement in its inhibiting performance compare to PEO. Thus, the induction time for simple gas hydrate formation in presence of kinetic hydrate inhibitor with PPO is higher, compare to kinetic hydrate inhibitor with PEO.  相似文献   

4.
Chitosan as green kinetic inhibitors for gas hydrate formation   总被引:1,自引:0,他引:1       下载免费PDF全文
The kinetic inhibiting effect of a number of chitosans on hydrate formation was investigated using methane and methane/ethane gas mixtures.The results indicated that chitosan was a good kinetic inhibitor.The induction time of gas hydrate formation evidently increased with the degree of deacetylation(DD),however,when DD was higher than 80%,the effect of DD on the induction time was negligible.Moreover,it was found that the molecular weight(MW)of chitosan and the addition of polyethylene oxide(PEO)had little effect on the induction time.The optimal concentration of chitosan was found to be 0.6wt%.Finally,the mechanisms of the kinetic inhibitor on the hydrate formation were discussed.  相似文献   

5.
The effect of super absorbent polymer (SAP) on the formation of tetrahydrofuran (THF) hydrate was studied by the successional cooling method. It was found that THF solution samples with 0.004 wt% and 0.03 wt% of SAP formed THF hydrate completely during the same cooling process. The corresponding induction time was 16-29 min, 14-31 min, respectively, which was obviously shorter than that of THF solution samples without SAP (25-62 min). It indicated that SAP accelerated the formation of THF hydrate. At the same time, the pictures of hydrate formation with and without SAP had been compared. It was found that SAP did not change the morphology of the hydrate. Finally, the mechanism of SAP promoting effect on the formation of THF hydrate was suggested.  相似文献   

6.
The formation of hydrates from a methane-ethane-propane mixture is more complex than with single gases. Using nuclear magnetic resonance (NMR) and high-pressure powder X-ray diffraction (PXRD), we have investigated the structural properties of natural gas hydrates crystallized in the presence of kinetic hydrate inhibitors (KHIs), two commercial inhibitors and two biological ice inhibitors, or antifreeze proteins (AFPs). NMR analyses indicated that hydrate cage occupancy was at near saturation for controls and most inhibitor types. Some exceptions were found in systems containing a new commercial KHI (HIW85281) and a recombinant plant AFP, suggesting that these two inhibitors could impact the kinetics of cavity formation. NMR analysis confirmed that the hydrate composition varies during crystal growth by kinetic effects. Strikingly, the coexistence of both structures I (sI) and II (sII) were observed in NMR spectra and PXRD profiles. It is suggested that sI phases may form more readily from liquid water. Real time PXRD monitoring showed that sI hydrates were less stable than sII crystals, and there was a conversion to the stable phase over time. Both commercial KHIs and AFPs had an impact on hydrate metastability, but transient sI PXRD intensity profiles indicated significantly different modes of interaction with the various inhibitors and the natural gas hydrate system.  相似文献   

7.
Clathrate hydrate can be used in energy gas storage and transportation,CO 2 capture and cool storage etc.However,these technologies are difficult to be used due to the low formation rate and long induction time of hydrate formation.In this paper,ZIF-61(zeolite imidazolate framework,ZIF) was first used in hydrate formation to stimulate hydrate nucleation.As an additive of clathrate hydrate,ZIF-61 promoted obviously the acceleration of tetrahydrofuran(THF) hydrate nucleation.It shortened the induction time of THF hydrate formation from 2-5 h to 0.3-1 h mainly due to the template function of ZIF-61 by which the nucleation of THF hydrate has been promoted.  相似文献   

8.
We present the results of a combined theoretical/experimental study into a new class of kinetic inhibitor of gas hydrate formation. The inhibitors are based on quaternary ammonium zwitterions, and were identified from a computational screen. Molecular dynamics simulations were used to characterize the effect of the inhibitor on the interface between a type II hydrate and natural gas. These simulations show that the inhibitor is bifunctional, with the hydrophobic end being compatible with the water structure present at the hydrate interface, while the negatively charged functional group promotes a long ranged water structure that is inconsistent with the hydrate phase; the sulfonate-induced structure was found to propagate strongly over several solvation shells. The compound was subsequently synthesized and used in an experimental study of both THF and ethane hydrate formation, and was shown to have an activity that was comparable with an existing commercial kinetic inhibitor: PVP.  相似文献   

9.
The influence of kinetic hydrate inhibitors on the process of natural gas hydrate nucleation was studied using the method of dielectric spectroscopy. The processes of gas hydrate formation and decomposition were monitored using the temperature dependence of the real component of the dielectric constant ε′(T). Analysis of the relaxation times τ and activation energy ΔE of the dielectric relaxation process revealed the inhibitor was involved in hydrogen bonding and the disruption of the local structures of water molecules.  相似文献   

10.
In this work, the performance of nine ionic liquids (ILs) as thermodynamic hydrate inhibitors is investigated. The dissociation temperature is determined for methane gas hydrates using a high pressure micro deferential scanning calorimeter between (3.6 and 11.2) MPa. All the aqueous IL solutions are studied at a mass fraction of 0.10. The performance of the two best ILs is further investigated at various concentrations. Electrical conductivity and pH of these aqueous IL solutions (0.10 mass fraction) are also measured. The enthalpy of gas hydrate dissociation is calculated by the Clausius–Clapeyron equation. It is found that the ILs shift the methane hydrate (liquid + vapour) equilibrium curve (HLVE) to lower temperature and higher pressure. Our results indicate 1-(2-hydroxyethyl) 3-methylimidazolium chloride is the best among the ILs studied as a thermodynamic hydrate inhibitor. A statistical analysis reveals there is a moderate correlation between electrical conductivity and the efficiency of the IL as a gas hydrate inhibitor. The average enthalpies of methane hydrate dissociation in the presence of these ILs are found to be in the range of (57.0 to 59.1) kJ  mol−1. There is no significant difference between the dissociation enthalpy of methane hydrate either in the presence or in absence of ILs.  相似文献   

11.
A new high performance gas hydrate inhibitor   总被引:1,自引:0,他引:1       下载免费PDF全文
In petroleum exploration and production operations, gas hydrates pose serious flow assurance, economic and safety concerns. Thermodynamic inhibitors are widely used to reduce the risks associated with gas hydrate formation. In the present study, systematic laboratory work was undertaken to determine synergistic effects between methanol and a Poly Vinyl Methyl Ether as Low Dosage Hydrate Inhibitors (LDHIs). A valuable effect was discovered at a certain ratio of methanol to the low dosage hydrate inhibitor.  相似文献   

12.
The design of new dual-function inhibitors simultaneously preventing hydrate formation and corrosion is a relevant issue for the oil and gas industry. The structure-property relationship for a promising class of hybrid inhibitors based on waterborne polyurethanes (WPU) was studied in this work. Variation of diethanolamines differing in the size and branching of N-substituents (methyl, n-butyl, and tert-butyl), as well as the amount of these groups, allowed the structure of polymer molecules to be preset during their synthesis. To assess the hydrate and corrosion inhibition efficiency of developed reagents pressurized rocking cells, electrochemistry and weight-loss techniques were used. A distinct effect of these variables altering the hydrophobicity of obtained compounds on their target properties was revealed. Polymers with increased content of diethanolamine fragments with n- or tert-butyl as N-substituent (WPU-6 and WPU-7, respectively) worked as dual-function inhibitors, showing nearly the same efficiency as commercial ones at low concentration (0.25 wt%), with the branched one (tert-butyl; WPU-7) turning out to be more effective as a corrosion inhibitor. Commercial kinetic hydrate inhibitor Luvicap 55 W and corrosion inhibitor Armohib CI-28 were taken as reference samples. Preliminary study reveals that WPU-6 and WPU-7 polyurethanes as well as Luvicap 55 W are all poorly biodegradable compounds; BODt/CODcr (ratio of Biochemical oxygen demand and Chemical oxygen demand) value is 0.234 and 0.294 for WPU-6 and WPU-7, respectively, compared to 0.251 for commercial kinetic hydrate inhibitor Luvicap 55 W. Since the obtained polyurethanes have a bifunctional effect and operate at low enough concentrations, their employment is expected to reduce both operating costs and environmental impact.  相似文献   

13.
Amphiphilic block copolymers of short poly(styrene) (PS) or poly(2,3,4,5,6-pentafluorostyrene) (PPFS) segments with comparatively longer poly(vinyl acetate) or poly(vinylpyrrolidone) (PVP) segments are synthesized using a 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)dithiocarbamate switchable reversible addition–fragmentation chain transfer (RAFT) agent toward application as kinetic gas hydrate inhibitors (KHIs). Polymerization conditions are optimized to provide water-soluble block copolymers by first polymerizing more activated monomers such as S and PFS to form a defined macro chain-transfer agent (linear degree of polymerization with conversion, comparatively low dispersity) followed by chain extensions with less activated monomers VAc or VP by switching to the deprotonated form of the RAFT agent. The critical micelle concentrations of these amphiphilic block copolymers (after VAc unit hydrolysis to vinyl alcohol units) are measured using zeta surface potential measurements to estimate physical behavior once mixed with the hydrates. A PS-poly(vinyl alcohol) block copolymer improved inhibition to 49% compared to the pure methane–water system with no KHIs. This inhibition was further reduced by 27% by substituting the PS with a more hydrophobic PPFS. A block copolymer of PS–PVP exhibited 20% greater inhibition than the PVP homopolymer and substituting PS with a more hydrophobic PPFS resulted in a 35% further decreased in methane KHI. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2445–2457, 56, 2445–2457  相似文献   

14.
Storage and transportation of natural gas as gas hydrate (“gas-to-solids technology”) is a promising alternative to the established liquefied natural gas (LNG) or compressed natural gas (CNG) technologies. Gas hydrates offer a relatively high gas storage capacity and mild temperature and pressure conditions for formation. Simulations based on the van der Waals–Platteeuw model and molecular dynamics (MD) are employed in this study to relate the methane gas content/occupancy in different hydrate systems with the hydrate stability conditions including temperature, pressure, and secondary clathrate stabilizing guests. Methane is chosen as a model system for natural gas. It was found that the addition of about 1% propane suffices to increase the structure II (sII) methane hydrate stability without excessively compromising methane storage capacity in hydrate. When tetrahydrofuran (THF) is used as the stabilizing agent in sII hydrate at concentration between 1% and 3%, a reasonably high methane content in hydrate can be maintained (∼85–100, v/v) without dealing with pressures more than 5 MPa and close to room temperature.  相似文献   

15.
Tetrahydrofuran (THF) was selected as the substitute to study the flow behaviors and the mechanism of the hydrates blockage in pipelines. The slurrylike hydrates and slushlike hydrates are observed with the formation of hydrates in pipeline. There is a critical hydrate volume concentration of 50.6% for THF slurries and pipeline will be free of hydrate blockage while the hydrate volume concentration is lower than the critical volume concentration; otherwise, pipeline will be easy to be blocked. Fully turbulent flow occurs and friction factors tend to be constant when the velocity reaches 1.5 m/s. And then, constant values of friction factors that depend on the volume concentrations in the slurry were regressed to estimate the pressure drops of THF hydrate slurry at large mean velocity. Finally, a safe region, defined according to the critical hydrate volume concentration, was proposed for THF hydrate slurry, which may provide some insight for further studying the natural gas hydrate slurries and judge whether the pipeline can be run safely or not.  相似文献   

16.
用分子动力学模拟方法确定了结构H型(SH)天然气水合物的稳定晶体生长面为(001), 系统研究了277 K时三种动力学抑制剂对此晶面的影响. 模拟显示抑制剂中的氧与表面水分子形成氢键, 从而破坏原有的稳定结构, 造成水合物笼型结构坍塌, 达到抑制水合物形成的效果. 比较三种不同动力学抑制剂对SH的抑制效果得出: PVCap>PEO>PVP. 在此基础上研究了PVCap对天然气水合物结构I型(SI), 结构II型(SII)和SH三种不同晶型的抑制效应. 模拟发现抑制效果的次序为: SH>SI>SII.  相似文献   

17.
A novel technique for separating hydrogen from (H2 CH4) gas mixtures through hydrate formation/dissociation was proposed. In this work, a systematic experimental study was performed on the separation of hydrogen from (H2 CH4) feed mixtures with various hydrogen contents (mole fraction x = 40%-90%). The experimental results showed that the hydrogen content could be enriched to as high as ~94% for various feed mixtures using the proposed hydrate technology under a temperature slightly above 0℃ and a pressure below 5.0 MPa. With the addition of a small amount of suitable additives, the rate of hydrate formation could be increased significantly. Anti-agglomeration was used to disperse hydrate particles into the condensate phase. Instead of preventing hydrate growth (as in the kinetic inhibitor tests), hydrates were allowed to form, but only as small dispersed particles. Anti-agglomeration could keep hydrate particles suspended in a range of condensate types at 1℃ and 5 MPa in the water-in-oil emulsion.  相似文献   

18.
The effects of a typical anti-agglomerant, sorbitan monooleate (Span80), on the interactions between cyclopentane (CyC5) hydrate particles and water droplets were investigated using a micromechanical force (MMF) apparatus. The concentration of Span80 in CyC5 was ranged from 0.01?wt% to 1?wt%, and the experimental temperature was set at 1.5°C and 7°C, respectively. The results indicate that the absorption of Span80 on the droplet surface can render the interfaces more stable, preventing hydrate agglomeration. When the preload/contact force exceeds the strength of the interface (相似文献   

19.
The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this paper, we discussed the geochemical anomaly during hydrate formation in porous media. By doing so, we also investigated the temperature influence on hydrate formation under isobaric condition. It turns out that sub-cooling is an important factor to dominate hydrate formation. Larger subcooling provides more powerful driving force for hydrate formation. During the geochemical anomaly research, six kinds of ions and the total dissolved salt (TDS) were measured before and after the experiment in different porous media. The result is that all kinds of ionic concentration increased after hydrate formation which can be defined as salting out effect mainly affected by gas consumption. But the variation ratio of different ions is not equal. Ca2+ seems to be the most significantly influenced one, and its variation ratio is up to 80%. Finally, we theoretically made a model to calculate the TDS variation, the result is in good accordance with measured one, especially when gas consumption is large.  相似文献   

20.
Literature data for the hydrate temperature depression by mono-ethylene glycol (MEG) show some scattering and no thermodynamic model has been able to match all of the available data found in the open literature. This paper presents hydrate equilibrium data for a mixture of 88.13 mol% methane and 11.87 mol% propane with MEG added to the water phase in concentrations from 0 to 60 wt%. That particular hydrocarbon mixture was chosen because it with pure water at pressures above 60 bar shows hydrate dissociation temperatures above 20 °C and because hydrate dissociation temperatures above the freezing point of water are still seen when the aqueous phase contains 50 wt% MEG. This range of inhibitor dosage is typical in North Sea pipelines, and for optimal hydrate control it is vital to have high quality experimental data of hydrate equilibrium. Previously published data for the same hydrocarbon mixture as used in this study show a lower hydrate depression by MEG compared to other available data. The new data from this work show that MEG is more efficient as a hydrate inhibitor than the previously published data for the same system has suggested. The new data and earlier MEG inhibition data for other systems can all be modeled within experimental uncertainty using the hydrate model of Munck et al. and a conventional cubic equation of state for the H2O-MEG component pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号