首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solvent extraction of thorium(IV) (4.3·10–4M) from nitric acid solution by bis-2-(butoxyethyl ether) (butex or DBC) has been studied. It has been investigated as a function of nitric acid, extractant and metal ion concentration. The effect of equilibration time, diverse ions and salting-out agent on the extraction has also been examined. Among anions, fluoride, phosphate, oxalate and perchlorate have reduced the extraction. Cations such as Na(I), K(I), Ca(II), Zn(II), Al(III), Ti(IV), Zr(IV) except Sr(II) and Pb(II) do not interfere in the extraction. The extraction is enhanced upto 97% in three stages at 6M HNO3 having 2.94M NaNO3 as salting-out agent. The extraction is found to be independent of thorium concentration in the range studied (4.3·10–4–4.3·10–2M). The temperature (18–45°C) has an adverse effect on the extraction. A 1% solution of ammonium bifluoride is found to be a good stripping solution and recovery of thorium is >98%.  相似文献   

2.
The densities and volumetric specific heats of hydrochloric acid, alkali chlorides and bromides, and tetraalkylammonium bromides were measured in 0 to 40% by weighttert-butanol (t-BuOH) in water with a flow densimeter and a flow microcalorimeter. The effect of salt concentration was investigated in the case of NaCl. The apparent molal volumes and heat capacities and the derived transfer functions of the electrolytes from water tot-BuOH-water mixtures can be interpreted through solute-solute pair and triplet interactions by analogy with the transfer functions oft-BuOH from water to electrolyte solutions, with the salting-in and salting-out effects, and with the influence of electrolytes on the thermodynamics of micellization. At lowt-BuOH concentrations, the transfer functions seem to be reflecting primarily electrolyte-nonelectrolyte pair interactions. At intermediatet-BuOH concentration, wheret-BuOH associates, the hydrophobic bonding is enhanced by hydrophilic ions through a salting-out effect on monomers and by hydrophobic salts through triplet interaction (mixed association complexes). The Me 4 NBr and Et 4 NBr are intermediate electrolytes which do not have much effect on thet-BuOH hydrophobic bonding. At hight-BuOH concentrations the transfer functions tend to the values they would have in puret-BuOH.  相似文献   

3.
Kinetics of silver electrodeposition in the presence of sulfide ions is studied on electrodes renewed by cutting off a thin surface layer, at a controlled time of contact of the “fresh” surface with the electrolyte. Solutions containing 10?2 M AgNO3, 0.1 M thiocarbamide, 0.5 M HClO4, and from 2 × 10?6 to 1.5 × 10?5 M Na2S are studied. It is shown that under the studied conditions, the effect of silver electrodeposition on the surface concentration of sulfide ions is insignificant. As the concentration of sulfide ions in solution and their coverage on the electrode surface θ increase, the cathodic polarization decreases. Tafel curves plotted for θ = const are used in estimating the exchange current i 0 and the transfer coefficient α. It is shown that α ≈ 0.5 and weakly depends on θ, whereas the exchange current increases with the increase in θ by an approximately linear law from 10?5 A/cm2 at θ ? 0 to 10?4 A/cm2 at θ = 0.43. The obtained data are compared with the results of kinetic studies of silver anodic dissolution in similar solutions.  相似文献   

4.
The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol · kg?1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 · 10?8 to 143 · 10?8) mol · kg?1. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg · mol?1.The standard molar Gibbs free energies, ΔtrG°, enthalpies, ΔtrH°, and entropies, ΔtrS°, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated ΔtrG° values were positive [(20 to 1230) J · mol?1]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.  相似文献   

5.
The electronic absorption spectra of solutions of some of the most common 3d metal chlorides have been studied in molten solvents SbCl3 and SbCl3KCl (8 mole%KCl and their solid reflectance spectra also recorded. These spectra are discussed in terms of the likely geometries of the species present in solution and are compared with results obtained by other workers in molten salt systems. The predominant environment observed is that of an octahedral field of ions and only in the case of the Mn(II) and Co(II) ions are tetrahedral geometries observed. The Co(II) system exhibits a tetrahedral-octahedral equilibrium which is dependent on the amount of chloride ion added to the melt. A value for a term, called by Gruen and McBeth[1] the “electrostatic factor”, E2+ has been estimated for molten SbCl3 and this is compared with the value of E2+ obtained by them for di positive metal ions in LiClKCl solutions.  相似文献   

6.
The heat effects of the formation of Ni(II) complexes with L-histidine in an aqueous solution are determined via direct calorimetry at 298.15 K and ionic strengths of 0.2, 0.5, and 1.0 (KNO3). The standard thermodynamic characteristics (Δr H , Δr G , Δr S ) of complex formation in the investigated system are calculated. It is concluded that the resulting values are consistent with the results from studying the structure of L-histidine complexes with Ni2+ ions by various spectral methods.  相似文献   

7.
Using the method of phase modeling, the pH values of solutions corresponding to the uncharged surface of passive iron and ferric oxide γ-Fe2O3 (pH0) are compared. According to the theory of connected places, the charge of metal oxide surface is determined by the adsorption or desorption of hydrogen ions leading to a change in the potential drop at the oxide/solution interface. Preliminarily passivated iron electrode was washed with twice-distilled water and placed into 0.5 M NaNO3 solution with various pH values; the variation in the potential (ΔE) with time was studied. The pH0 value for passive electrode under the open-circuit conditions was determined by the dependence of ΔE on the pH value (pH0 6.2 ± 0.1). The pH0 value was close to that for γ-Fe2O3 (pH0 6.2), which was determined by the method of potentiometrical titration of oxide suspension in the nitrate solution. The introduction of surface-active ions Ba2+ and Cl? changes the charge of passive iron surface: Ba2+ ions increase the electrode potential, while Cl? ions decrease it. Comparing the pH0 values for passive electrode and metal oxides, one can identify the composition of passive electrode surface.  相似文献   

8.
Polarographic reductions of sodium and potassium ions in hexamethylphosphoramide (HMPA) have been examined in various supporting electrolytes. The supporting electrolytes, which have much the same solvated radii and much the same electrocapillary curves, sometimes have a significantly different influence on the polarographic reductions of metal ions. The Li+ and Hex4N+ ions provide a typical example. Their effective radii are seen to have much the same characteristics. However, the polarographic reduction of the sodium ion shows a difference in shape between that occurring in Li+ solution and that in Hex4N+ solution. Another example is found in the case of Et4N+, Me4N+ and 5N6+, whose reff and the electrocapillary curves are much the same. However, the polarographic reductions of the sodium and potassium ions are different in these solutions. The solvation number of the solvent molecule of the supporting electrolyte cation seems to exert a great influence on these reductions. The electrocapillary curves were also examined with the tetradodecylammonium ion, tetradecylammonium ion and tetraphenylphosphonium ion used as the supporting electrolytes. The inhibition of the reduction of metal ion for these cations is evidence for their lack of solvation. The effects of the solvated asymmetrical tetraalkylammonium ions on the polarographic behaviour were also examined. When some methyl groups cooperate with the tetraalkylammonium ion, the chemical character is between that of the Et4N+ ion and that of the Me4N+ ion.  相似文献   

9.
Determination of chromium by oxidation of chromite with permanganate does not give accurate results. KmnO4 is reduced to MnO2. Titration of KmnO4 with Cr+3 solution in the presence of 0.8–1.5N NaOH and Ba+2 ions yields manganate and gives good results. In the absence of Ba+2 ions and in the presence of 0.5–2N NaOH reduction of KmnO4 passes quantitatively to MnO2.Cr+3 can be determined by adding the chromic solution to KmnO4 while stirring in presence of 1N NaOH and Ba+2 ions, or a. 2.5N NaOH in the absence ofBa+2 ions. The excess KmnO4 is then back-titrated with formic acid.  相似文献   

10.
The determination of gas-phase reactivity of a series of polycyclic aromatic hydrocarbons (PAHs) with nucleophiles is directed at achieving isomer differentiation through ion-molecule reactions and collisionally activated decomposition spectra. A series of PAH isomers form gas-phase [adduci — H]+ ions with the reagent nucleophiles pyridine and N-methylimidazole. Collisionally activated decomposition spectra of the [adduct — H]+ ions of the pyridine/PAH systems are dominated by products formed by losses of C5H4N, C5H5N (presumably neutral pyridine), and C5H6N. Collisional activation of PAH/N-methylimidazole [adduct — H]+ ions causes analogous losses of C4H5N2, C4H6N2 (presumably neutral N-methylimidazole), and C4H7N2. The relative abundances of the ions that result from these losses are highly isomer specific for N-methylimidazole but less so for pyridine. Furthermore, PAH/N-methylimidazole [adduct — H]+ ions undergo a series of metastableion decompositions that also provide highly isomer-specific information. The C4H7N2 (from PAH/N-methylimidazole product ions) and C5H6N (from PAH/pyridine product ions) losses tend to increase with the ΔH f of the PAH radical cation. In addition, it is shown that the fragmentation patterns of these gas-phase PAH/nucleophile adducts are similar to fragmentation patterns of PAH/nucleoside adducts generated in solution, which suggests that the structures of products formed in gas-phase reactions are similar to those produced in solution.  相似文献   

11.
《Chemical physics letters》1987,134(3):214-219
A method is described for the production of large cluster ions by direct laser vaporization in a low-pressure FTMS. Production of high-mass carbon cluster ions (Cn+; 40 <n < 180) and bismuth-antimony (BixSby+) cluster ions containing up to five metal atoms are reported. The observed distributions are compared with those obtained previously by both direct laser vaporization and molecular beam sources. Details of the mechanism for formation of these larger cluster ions by direct laser vaporization are discussed. The mass selectivity and long ion residence times obtainable in the FTMS may now be utilized in the study of these cluster ions. Results are presented from a limited study of the ion/molecule reactions and collision induced dissociation of the high-mass carbon cluster ions.  相似文献   

12.
Conformational properties of isotactic poly(2-hydroxyethyl methacrylate) (PHEMA) have been studied by viscometry in various electrolytic solutions. The intrinsic viscosity of isotactic PHEMA at 0.01M salt solution increases with decreasing the B coefficient in Jones—Dole's equation. In respective to water structures, a polymer chain is more expanded in the salt solution including water structure breaker ions. As the concentration of ions increases, the interactions between polymer segments and ions make a major contribution to conformational changes of isotactic PHEMA. Depending on the kind of ions, a salting-in or out effect is observed at higher concentrations than 0.1M salt solution. We observed that the denaturing effects of various anions in isotactic PHEMA salt solutions are as follows; SO42- < F? < I? NO3? < SCN-. This order is similar to the Hofmeister series. To investigate the influences of denaturing agents on solvent structures, we also compared the guanidine hydrochloride effect with the tetrabutylammonium chloride effect in isotactic PHEMA solution.  相似文献   

13.
Electrospray ionization quadrupole ion trap mass spectrometry (ESI-QIT/MS) of the ammonium cerium(III) phosphomolybdate complex (NH4)11[Ce(III)(PMo11O39)2] in aqueous media has revealed a concentration-dependent behavior. Under fixed instrumental parameters, the Ce-containing polyoxomolybdate complexes H2Ce(III)P2Mo22O753? and Ce(III)PMo11O382? are the primary species present at 11 mM (pH = 4.3); at 0.7 mM (pH = 3.6), Ce(III)PMo10O352? is the predominant species, Ce(III)PMo11O382? is quite diminished, and H2Ce(III)P2Mo22O753? is absent. As a result of the complex isotopic fingerprints from multiple molybdenums, compositions of such ions are difficult to assign—successive collision induced dissociation (CID) of large ions produced smaller ions for which calculated and experimental isotopic patterns could be compared. The oxidation state of Ce and the number of counter cations on negative complexes was discerned from spectra of ions containing 1H+ and 7Li+. The overall result is an ESI method applicable to phosphomolybdate complexes containing redox sensitive f-block metal ions such as Ce(IV) and Pu(III/IV). Dissociation studies also gave insight into favored fragmentation pathways, and generated gas ions with empirical formulae similar to known condensed-phase ions. Deconvolution of concentration- and pH-dependent solution behavior via ESI/MS and 31P NMR spectroscopy showed speciation dependent on solution concentration, not on pH.  相似文献   

14.
In acid solution ferrocenylcarbinols are in equilibrium with the corresponding ferrocenylcarbonium ions FcC+RR′. The pKR+ of these ions have been determinated by spectroscopy.These ions are reduced on the dropping mercury electrode. The mechanism of the electrode process has been established by electrolysis with controlled potential. It corresponds to an electro-dimerisation of a free radical which is generated in a one electron process.  相似文献   

15.
Hexagonal tungsten oxide (hex-WO3) with exchangeable sodium and ammonium cations located in hexagonal channel was synthesized by a facile hydrothermal treatment of sodium tungstate dihydrate in concentrated HCl solution in the presence of ammonium sulfate. An attempt was made to assess the potential of hex-WO3 for the adsorption of Sr2+ ions from acidic radioactive waste solutions. Adsorption of Sr2+ reached equilibrium very quickly in 2 h in acidic aqueous solution. Maximum removal of Sr2+ ions occurred at pH 4. Equilibrium studies showed that the extent of Sr2+ ions uptake by hex-WO3 was better described by the Freundlich isotherm in comparison with the Langmuir model. The thermodynamic parameters showed that the adsorption of Sr2+ ions onto hex-WO3 was spontaneous and exothermic under the studied conditions.  相似文献   

16.
The transference of water that results from ion migration through the nickel hydroxide precipitate membrane was studied in chloride, perchlorate, nitrate, and sulphate solutions to estimate the transference number of water and the co-ion transport. In the systems of univalent anions, the moles of water transported per mole of electrons in 0.1 N solutions is almost identical to the hydration number of each anion. This water flow decreases gradually as the concentration of external solution increases, because of increase in the co-ion (cation) transport with increasing concentration of the solution. In the system of sulphate solutions the co-ion transport is remarkable, the transport number of Na+ ions being 0.03 in 0.01 N, 0.27 in 0.10 N, and 0.50 in 0.5 N Na2SO4 solution. This large co-ion transport in Na2SO4 solution is attributed to the partical replacement of hydroxyl groups on the membrane by SO2?4 ions, which then acts as a negative fixed charge. The order of the selectivity for co-ion transport is K+ > Na+ > Li+ > Ni2+ ? Mg2+ in sulphate solutions and also in chloride solutions, although the transport number of the cations is much smaller in chloride solution than in sulphate solution.  相似文献   

17.
《Chemical physics》1987,116(2):193-202
Hydrated Be2+ ions [Be(H2O)n]2+, n = 1−4 and 6, were examined theoretically. The structure of the hydrated ions was determined and the hydration energy estimated with and without electron correlation. The bond between the Be2+ ion and the oxygen of water is very strong and has the nature of a dative bond. The non-additivity of the binding energy is so profound that without taking it into account the structure and dynamics of Be2+ ions cannot be explained. The hydration number in water is found to be 4. The fifth and sixth water molecules prefer forming the second coordination shell to the Be2+ ion. The result is in agreement with X-ray analysis of the aqueous solution, but not with a recent molecular dynamics simulation. In addition, the harmonic vibrational frequencies for the complexes are evaluated and compared with some experiments.  相似文献   

18.

Extraction of macro amounts of triply charged metal cations (0.01–0.05 mol L?1) in aqueous phase-separating system antipyrine–sulfosalicylic acid–water containing no organic solvent is studied. Optimum conditions for phase separation are established and the influence of the concentrations of the major components, inorganic acids (H2SO4, HCl), salting-out agents, and the volume of the aqueous phase on the process in question is determined. It was found that the optimum antipyrine/sulfosalicylic acid ratio in the system was (1.5–2.0): 1.0. The introduction of inorganic salting-out agents causes the volume of the organic phase (0.8–1.8 mL) to increase to 2 mL and more. The extractability series of triply charged metal ions is as follows: Tl > Fe > Sc > In > Ga. It was shown that inorganic salts and hexamine influence the degree of extraction of metal cations and that inorganic acids and water affect the distribution mechanism and the composition of the complexes. The half-extraction pH values (pH1/2) of the cations are calculated and correlations between the pH1/2 values, the ionic radii of the cations, and the polarization ability of the metal ions are established.

  相似文献   

19.
The salting-out effects of sodium, potassium, and cesium nitrates on the water-isopropanol system, which is homogeneous throughout its liquid-state temperature range, are compared at different temperatures. The alkali-metal nitrates, which undergo homoselective solvation in aqueous-organic solvents, exert a salting-out effect on aqueous isopropanol. As the crystallographic radius of the cation decreases in the order CsNO3-KNO3-NaNO3, the monotectic critical tie line temperature for the salt-water-isopropanol system decreases (79.0, 47.2, and 6.1°C, respectively). In each ternary system, the salting-out effect on isopropanol strengthens with an increasing temperature, particularly in the system containing sodium nitrate. Among the salts examined, the strongest salting-out effect between 6.1 and 90.0°C is produced by sodium nitrate.  相似文献   

20.
Diffusion experiments are reported for Ni and Cl ions in an aqueous solution of NiCl2. The markedly lower mobility of Ni is consistent with a hydration cloud, but the higher mobility of Cl ions establishes that Ni and Cl ions are not closely correlated (e.g. they are not strongly bound into a complex). For both ions, curvature in log D versus 1/T plots is found indicating that even for Ni, where neutron results indicate ordering over substantial distances, hopping via the sites of a super-lattice would be an oversimplification. In the light of this evidence, new calculations have been made of the X-ray scattering intensity. No model built on short-range ordering of Ni complexes can explain the data. Rather, one must consider the Ni ions fitted into the water structure. Assuming that the Cl ions scatter incoherently, and without considering Ni-H2O correlations, a model emerges which accounts for all the main peaks in the X-ray intensity out to 3.5 A?1. Finally, some discussion is given of the influence of Ni-H2O correlations. In wavenumber space, it is argued that provided two or more hydration shells, which arise from fitting Ni into the water structure, are included, no prominent new peaks in the X-ray intensity inside 3.5 A?1 occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号