首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the disperse phase and the diffuse interface between phases on the tensile and impact strengths of polypropylene (PP)/poly(ethylene terephthalate) (PET) (75/20 by weight) blends compatibilized with maleic anhydride–grafted PP derivatives and on the tensile modulus of poly(vinyl chloride)/polystyrene (PVC/PS) nanoparticle blends compatibilized with polystyrene/poly(vinyl acetate) (PS/PVAc) block copolymers were investigated experimentally. The weight fraction of the diffuse interface between the PP and PET phases in the PP/PET blends was determined by modulated differential scanning calorimetry (MDSC). A correlation between the diffuse interface content and mechanical properties was found. With increasing diffuse interface weight fraction, the impact and tensile strengths of the PP/PET blends increased. There is a brittle-tough type transition in these PP/PET blends. With increasing diffuse interface content in the PVC/PS nanoparticle blends in which the particle size was fixed at about 100 nm, the tensile modulus also clearly increased.  相似文献   

2.
Poly(lactic acid) (PLA)/poly(ethylene-co-vinyl alcohol) (EVOH) blends were prepared via melt blending to improve the barrier properties of PLA. The phase morphologies and final properties (rheological behavior, thermal and dynamical-mechanical features, barrier properties, and mechanical behaviors) of the blends were investigated as a function of the EVOH content. The results indicated that hydroxyl groups of EVOH promoted the degradation of PLA, and thus affected the viscosities and morphologies of the resulting blends. The intrinsic viscosities of PLA in the blends decreased with the content of EVOH. The PLA and EVOH presented typical phase-separated morphologies, with a relatively small domain size of the EVOH phase. The EVOH enhanced the cold-crystallization behavior of PLA. The barrier properties to water vapor and oxygen increased linearly with increasing EVOH content.  相似文献   

3.
Two types of polypropylene (PP) with different molecular structure, namely, homogeneous PP (PPH) and PP block‐copolymer (PPC), were blended with a long chain, branched, low density polyethylene (LDPE) in a twin screw extruder and then injection moulded into test specimens; the mechanical properties and morphology of the blends are reported. The tensile strength, elastic modulus, flexural strength, and flexural modulus of the blends increased monotonically with increasing PP content, although exhibiting a slightly negative deviation from the rules of mixtures due to the relatively poor compatibility of the components, which caused the blends to separate into individual phases. Comparatively, these mechanical properties of the LDPE/PPH blend were much higher than that of the LDPE/PPC blend, which was attributable mainly to the fact that the mechanical properties of neat PPH are stronger than that of neat PPC. With respect to the impact strength of the blends, a maximum value appeared in LDPE/PPH blends when PPH content was about 20% and also in LDPE/PPC blends when PPC content was about 40%.  相似文献   

4.
Poly(butyl acrylate)-g-poly(styrene-co-acrylonitrile) terpolymer (PBA-g-SAN) with different core/shell ratios and α-methylstyrene-acrylonitrile (α-MSAN) were mixed via melt blending (25/75, W/W). It was found that the core/shell ratio of PBA-g-SAN played an important role in the toughening of rigid α-MSAN. According to an analysis of the impact strength and the morphologies of the impact fractured surfaces, the optimum core/shell ratio with the highest toughening efficiency was 60/40. Considering the results of dynamic mechanical thermal analysis (DMTA), the blends retained the high glass transition temperature (Tg) of α-MSAN because of the immiscibility between the two components. Moreover, increasing the core/shell ratio did not result in sacrificing the heat distortion temperature of the blends, which was attributed to the almost unchanged high temperature Tg of α-MSAN. The tensile strength, flexural strength, and modulus declined slightly with the increasing core content of PBA-g-SAN, which suggested that the stiffness of the blends decreased with the increasing core/shell ratio. This study showed that 60/40 was the optimum core/shell ratio used for toughening modification; it achieved a good balance between mechanical and heat resistance performance.  相似文献   

5.
Abstract

Thermoplastic elastomers and their foams were prepared by blending elastomeric acrylonitrile butadiene rubber (NBR) and rigid poly(lactic acid) (PLA) with various PLA compositions ranging between 0 and 40%. The thermal and mechanical properties and the morphologies of the blends with various PLA contents were investigated through universal testing machine, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscope analysis. The rheological properties during gel formation were in situ monitored through the evolution of torque with curing time. Furthermore, the microcellular structures and physical properties of the NBR/PLA foams prepared using organic blowing agents were studied. The NBR/PLA blends showed a two-phase morphology made of a continuous NBR matrix and micron or submicron nodules and the tensile strength and modulus; also, hardness of the NBR/PLA blends increased with the increase of the added PLA content. While the foamed samples exhibited a similar cell structure and foaming ratio to that of the pure NBR, the cell formation was considerably reduced as the added PLA content exceeded 30%. We conclude that the mechanical properties of NBR thermoplastic elastomer as well as its foams can be controlled by a judicious introduction of rigid and biodegradable PLA.  相似文献   

6.
A range of blends based on 70 wt% of poly(trimethylene terephthalate) PTT with 30 wt% dispersed phase were produced via melt blending. The dispersed phase composition was varied from pure maleic anhydride grafted poly(ethylene-octene) (POE-g-MA) over a range of POE-g-MA:polypropylene (PP) ratios. The micromorphology and mechanical properties of the ternary blends were investigated. The results indicated that the domains of the POE-g-MA are dispersed in the PTT matrix, and at the same time the POE-g-MA encapsulate the PP domains. The interfacial reaction between the hydroxyl-end group of PTT and maleic anhydride (MA) during melt blending changes the formation from “isolated formation” to “capsule formation,” where the PP domains are encapsulated by POE-g-MA. Compared to the PTT/POE-g-MA blends, mechanical properties of ternary blends, such as tensile strength and Young's modulus, were improved significantly.  相似文献   

7.
The main goal of this work is to correlate morphological parameters of the binary blend of polyamide 6 (PA6) and a polylactide (PLA) based biodegradable co-polyester blend (BioFlex) (scanning electron microscopy, solvent extraction method) with the solid-state mechanical properties (stress strain analysis) as well as thermal (differential scanning calorimetry) and selected physico-chemical characteristics (Fourier transform infrared spectroscopy and water uptake analysis). The blends of PA6/BioFlex were prepared in ratios of 100/0, 90/10, 75/25, 60/40, 50/50, 40/60, 25/75, 10/90 and 0/100 in wt.%. The occurrence of co-continuous morphology was observed within the range of 40 to 60 wt.% of BioFlex. Furthermore, the results show that the co-continuous morphology of PA6/BioFlex blends significantly affected both tensile (E modulus) and thermal properties (melting enthalpy) of the blends. In the case of the tensile properties, the effect of the morphological arrangement was strongly dependent on the deformation range. The presence of BioFlex in the blends reduced the crystallizability of PA6 noticeably. Co-continuous structure formation was observed to have a significant effect on the melting enthalpy of the blend. Composition morphology dependent responses were observed in the case of the FTIR and water uptake studies.  相似文献   

8.
Polypropylene (PP)/ethylene-octene copolymer (POE) blends with 10–50wt% POE composition were prepared using a twin-screw extruder in the melt state. Mechanical properties of PP and PP/POE blends were tested and the effect of POE content on the crystalline morphology and structure, melting and crystallization behavior, compatiblilty, phase morphology, and the interface cohesiveness of the blends were investigated by polarizing optical microscope (POM), wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and scanning electron microscopy (SEM). The relationship between mechanical properties and microstructure of the PP/POE blends is discussed. The results showed that POE had a dual function of both reinforcing and toughening PP in the range from 10–40wt%, which was attributed to the integrated functions of the degree of crystallinity of the PP phase, phase morphology, and interface cohesiveness of the blend.  相似文献   

9.
Polypropylene (PP) /poly(trimethylene terephthalate), (PTT), binary blends in the presence of two interfacial modifier as well as two organically modified nanoclay additives were studied in terms of mechanical and morphological characteristics. Scanning electron microscopy confirmed the incompatibility of the system which was solved to some extent through incorporating the nanoclay as well as functional compatibilizers. An evaluation of the specimens via static mechanical tests in tensile mode gave credence to the assumption that the higher the PTT content, the higher the mechanical performance would be. Furthermore, the compatibilizer-containing blends not only exhibited higher toughness, but also possessed enhanced stiffness when a maleated compatibilizer was added. The tensile modulus was promoted further in the presence of clay nanoparticles; however, toughness was somewhat sacrificed. The Barentsen as well as Halpin-Tsai models were found to describe the binary blends modulus. The reinforcing impact of the nanoclay was exploited to a greater degree in the presence of the compatibilizer.  相似文献   

10.
The mechanical properties, morphology, and crystallization behavior of polycarbonate (PC)/polypropylene (PP) blends, with and without compatibilizer, were studied by tensile and impact tests, scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The tensile and impact strengths of PC/PP blends decreased with increasing the PP content due to poor compatibility between the two phases. But the addition of compatibilizer improved the mechanical properties of the PC/PP blends, and the maximum value of the mechanical properties, such as tensile and impact strengths of PC/PP (80/20 wt%) blends, were obtained when the compatibilizer was used at the amount of 4 phr. The SEM indicated that the compatibility and interfacial adhesion between PC and PP phases were enhanced. DSC results that showed the crystallization and melting peak temperatures of PP increased with the increase of the PP content, which indicated that the amorphous PC affected the crystallization behavior. However, both the PC and compatibilizer had little effect on the crystallinity of PP in PC/PP blends based on both the DSC and XRD patterns.  相似文献   

11.
Composites composed of the mixed fibers of L-lactide (LA) grafted sisal fiber (SF-g-LA) and untreated sisal fiber (USF) in a poly (lactic acid) (PLA) matrix were prepared with SF-g-LA/USF fibers ratios of 0, 1:9, 3:7, 5:5, 7:3, 9:1, and 1. The mechanical properties and the interfacial performance of the mixed SF reinforced PLA composites were investigated. The results of the study showed that the introduction of SF-g-LA improved the tensile strength, tensile modulus, flexural strength and flexural modulus of the mixed SF reinforced PLA composites compared with pure PLA or PLA composites with only USF, resulting from the improved interfacial adhesion between SF-g-LA and the PLA matrix. In addition, the introduction of some amount of USF enhanced the reinforcing efficiency of the mixed SF in the composites compared to the PLA composites with only SF-g-LA, owing to the good mechanical properties of USF itself. Furthermore, as for the tensile strength and tensile modulus of the mixed SF reinforced PLA composites, the optimal ratio of SF-g-LA and USF was 7:3, whereas for the flexural modulus of the mixed SF reinforced PLA composites, the optimal mixed ratio of SF-g-LA and USF was 3:7.  相似文献   

12.
Ethylene‐α‐olefin copolymer (POE)/polystyrene (PS)/poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) blends were prepared via melt blending in a co‐rotating twin‐screw extruder. The effects of SEBS copolymer on the morphology and rheological and mechanical properties of the blends were studied. Scanning electron microscopy (SEM) photos showed that the addition of SEBS copolymer resulted in finer dispersion of PS particles in the POE matrix and better interfacial adhesion between POE and PS compared with POE/PS blends, which exhibited a very coarse morphology due to the immiscibility between them. Interestingly, the tensile strength increased from 12.5 MPa for neat POE to 23.5 MPa for the POE/PS/SEBS (60/10/30) blend, whereas the tensile strengths of POE/PS (85.7/14.3) blend and POE/SEBS (66.7/33.3) blend were only 10.5 and 16.5 MPa, respectively. This indicates that both SEBS copolymer and PS have a synergistic reinforcing effect on POE. Dynamic mechanical thermal analysis (DMTA) and dynamic rheological property measurement also revealed that there existed some interactions between POE and SEBS as well as between SEBS and PS. DMTA results also showed that the storage modulus of POE increased when PS and SEBS were incorporated, especially at high temperature, which means that the service temperature of POE was improved.  相似文献   

13.
Halloysite nanotubes (HNTs) have been successfully modified using polyethyleneimine (PEI). HNTs and PEI-modified HNTs-filled 80/20 (wt/wt) polypropylene (PP)/acrylonitrile butadiene styrene (ABS) blends and its nanocomposites in the presence of dual compatibilizer have been prepared by melt mixing technique. The refinement in matrix–droplet morphology, selective localization of PEI-modified HNTs, increase in crystallinity of PP phase, formation of β-form of PP crystals and improved dispersion of PEI-modified HNTs in PP phase has resulted in a remarkable improvement in tensile modulus, impact strength and thermal stability of PEI-modified HNTs-filled 80/20 (wt/wt) PP/ABS blends in presence of dual compatibilizer. The increase in tensile modulus, tensile strength and impact strength for PEI-modified HNTs-filled 80/20 (wt/wt) PP/ABS blends in presence of dual compatibilizer are 28.8, 26.6 and 38.5%, respectively.  相似文献   

14.
A series of binary and ternary blends composed of polylactic acid (PLA), low-density polyethylene (LDPE), and chitosan (CS) were prepared and characterized in terms of their morphological and mechanical properties. The mechanical properties of the prepared blends, including tensile properties and impact strength, were compared with neat PLA. In addition, the effect of incorporation of maleic anhydride-grafted linear low-density polyethylene (LLDPE-g-MA) as a compatibilizing agent, and the order of mixing on the mechanical and morphological properties of the ternary blends were also studied. It was observed that addition of CS enhanced the stiffness of PLA/LDPE blends while it decreased the toughness and tensile strength. It was demonstrated that addition of LLDPE-g-MA, up to 10 wt%, had no significant compatibilizing effect. However, the mechanical results indicated that when 15 wt% of LLDPE-g-MA was loaded, it started to play a compatibilizing role and caused an improvement in the toughness properties of ternary blend.  相似文献   

15.
Blends of poly(vinyl chloride) (PVC) and poly(α-methylstyrene-acrylonitrile) (α-MSAN) with variable composition of 0 to 100 wt% were prepared by melt mixing. Properties of binary blends were extensively studied by differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), heat distortion temperature (HDT), mechanical properties, melt flow rate (MFR), and scanning electron microscope (SEM). A single glass transition temperature (Tg ) was observed by DSC and DMTA, indicating miscibility between PVC and α-MSAN. The results of ATR-FTIR indicated that specific strong interactions were not present in the blends and the miscibility was due to interaction between –CN and PVC. With increasing amount of α-MSAN, considerable increase occurred in HDT, flexural strength, and flexural modulus compared with reverse s-shaped decrease in impact strength and elongation at break. Synergism was observed in tensile strength and MFR. No phase separation was observed in SEM photographs, indicating miscibility between PVC and α-MSAN. In addition, morphology of the impact-fractured surfaces, including roughness and non-fused particles, correlated well with the mechanical properties and MFR.  相似文献   

16.
Polypropylene (PP) blends based on isotactic polypropylene (iPP), propylene-ethylene block copolymer (bPP), and propylene–ethylene random copolymer (rPP) were prepared by melt blending and the effects of content of bPP and rPP on the shrinkage during solidification and storage and mechanical properties of the blends were studied. It was found that the addition of polypropylene copolymer could effectively reduce the processing shrinkage of iPP and the lowest shrinkage of the blends was achieved at a loading of 2 wt% bPP or rPP. The flexural modulus and tensile strength of the blends decreased a little while the impact strength and elongation at break were improved greatly compared with those of iPP.  相似文献   

17.
Highly oriented self-reinforced 80/20 blends of polylactide (PLA)/thermoplastic polyurethane elastomer (TPU) were successfully fabricated through solid hot stretching technology. Different from the isotropic sample, stress rose rapidly in a low strain region, and exhibited strain hardening for the drawn samples of the PLA/TPU blend. Superior mechanical properties of the blend, with the notched Charpy impact strength 150 KJ/m2, and tensile strength 197 MPa, were achieved. With increasing hot stretch ratio, the storage modulus increased, the glass transition temperatures of the PLA-rich phase and TPU-rich phase in the blends moved to higher temperatures, and the melting temperature and crystallinity of the blend increased, indicating the stress-induced crystallization of the blend during drawing. The longitudinal fracture surfaces of the blends at different stretch ratios exhibited orderly arranged fibrillar bundle structure, which contributed to the significantly higher strength and toughness of the blend.  相似文献   

18.
Polylactide (PLA)/poly(ethylene-co-octene)(POE) blends with various contents of nano-SiO2 were prepared via melt mixing. The structure and properties of the PLA/POE/nano-SiO2 ternary composites were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), rheometry, and tensile testing. The particle size of the dispersed POE phase first decreased with increasing nano-SiO2 content and then remained constant. Nano-SiO2 played an important role in the heterogeneous nucleation of PLA, which resulted in an increase of the crystallinity of PLA. The synergistic effect of both POE and nano-SiO2 can significantly improve the toughness, strength, and modulus of PLA. When the ratio of PLA/POE/nano-SiO2 was 90/10/0.5, PLA/POE/nano-SiO2 composite had the best comprehensive properties.  相似文献   

19.
The presence of aliphatic hydroxyl groups in poly(ethylene-co-vinylaleohol) (EVOH) suggests that these copolymers have the potential of forming miscible blends, within certain composition ranges, with a variety of polymers containing complementary functional groups. Hydrogen bonding in EVOH involves a wide variety of inter- and intramolecular species and plays an important role in the phase behavior of EVOH blends. Polymer blends of two random copolymers, EVOH with different ethylene contents and copolyamide-6/6.9 (COPA) at an approximately 1:1 comonomer ratio, were investigated using Fourier transform infrared (FTIR), near-IR, transmission electron microscopy (TEM), and scanning electron microscopy (SEM) methods. The blends were found to be partially miscible due to intermolecular hydrogen bonding between the OH group of the EVOH and the amide group of the copolyamide. The EVOH-rich blends exhibit much lower miscibility compared with the copolyamide-rich blends.  相似文献   

20.
Mechanical properties and morphology of blends of polypropylene (PP) with high molecular weight polyethylene (HMWPE) prepared by coprecipitation from xylene solution are investigated. Compared to blends of PP with commercial high-density polyethylene (HDPE), the mechanical properties of the blends of PP/HMWPE are much superior to those of PP/HDPE blends. Not only is the tensile strength stronger, but also the elongation at break is much higher than that of the PP/HDPE blends of the same composition. These differences increase with increasing HMWPE and HDPE content. Scanning electron microscopy of the fracture surface resulting from the tensile tests shows that the compatibility in PP/ HMWPE blends is much better than that in PP/HDPE blends. This is most likely attributable to the enhanced chain entanglement of HMWPE with the PP in the amorphous phase due to the lower crystallinity, owing to the high molecular weight of the HMWPE, and a much more flexible chain. The thermal behavior and spherulite morphology of both blends are also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号