首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report Mössbauer diffraction measurements of the temperature dependence of the elastic and inelastic intensities at the (100) Bragg reflection in 1TTaS2. These measurements use a newly developed microfoil conversion electron (MICE) spectrometry. They cover the temperature range from 19°C to 100°C, bracketing the first order 1T1 to 1T2 phase transition in the charge density wave structure at 79°C. The elastic Bragg peak shows a discontinuity at the phase transition as reported by Moret and Colella. The inelastic scattering shows a significant peak near the phase transition. This peak is interpreted as inelastic critical scattering at this first order phase transition.  相似文献   

2.
Thermo-sensitive gels were prepared by irradiating aqueous solutions of poly(N-n-propylacrylamide) (NNPA) and its copolymers with acrylic acid (AA) with γ-rays from a 60Co source. The equilibrium swelling volume of the gel in water was determined as a function of temperature. NNPA gel showed a discontinuous and reversible volume phase transition. The transition temperature and the volume change at the transition decreased with irradiation time. The transition temperature was approximately 12°C lower than that of poly(N-isopropylacrylamide) gel. A discontinuous volume transition was also observed in the copolymer gels of NNPA and AA. The dependence of the transition temperature on the concentration of carboxyl groups revealed a marked difference depending on whether they were protonated or dissociated. For gels having side groups of COONa, the transition temperature rose and the volume change at the transition was elevated as the COONa concentration increased. In contrast, an increase in the COOH concentration resulted in a decrease in the transition temperature. These results are discussed in terms of an equation of state constructed based on scaling theory.  相似文献   

3.
The temperature dependence of elastic stiffnesses of K2Ba(NO2)4 is investigated in the range - 140 to + 160°C, in which two phase transitions have been reported. Marked anomalies appear at the lower transition, in contrast with continuous variations through the upper transition. Results are compared to those obtained near the upper transition by an ultrasonic method and they are qualitatively discussed.  相似文献   

4.
The temperature dependence of the C55 elastic constant of LaP5O14 has been investigated, using Brillouin scattering, between room-temperature and 225°C, across the 126°C ferroelastic phase transition of this material. C55 is found to vanish at the transitión. Physical implications of this result are discussed.  相似文献   

5.
Abstract

The quartz resonator method measures the complex shear modulus or compliance of viscoelastic materials in the frequency range from 50 kHz to 140 MHz at temperatures between ?150°C and 300°C and pressures up to 1 GPa. This method can be applied to viscous fluids or polymer melts -even in their glassy or seminystalline regime.

The phase diagram of poly(diethylsiloxane) PDES (a mesophase polymer) was determined for two samples with different molecular weight at pressures up to 400 MPa and temperatures between 20°C and 100°C. Phase transitions are indicated by a sharp bend in the shear compliance although the volume effect of the mesophase-isotropic transition vanishes around 80 MPa.

The pressure dependence of the glass relaxation process (in PVAc), was studied by measuring the change of the complex shear modulus with pressure at constant temperatures between 95°C and 145°C and pressures up to 600 MPa. Additionally to the relaxation process, also the pressure dependence of the real part of the shear modulus in the glassy region can be determined for testing the dislocation concept in the meandermodell by W. Pechhold.  相似文献   

6.
The temperature dependence of the elastic modulus E1 of crystalline regions of poly(ethylene terephthalate) (PET) in the direction parallel to the chain axis has been investigated by x-ray diffraction. The axial chain contraction coefficient is constant from 25°C to 200°C, and correspondingly the value of E1 (108 GPa) remain unchanged up to 215°C. This is in contrast with the temperature dependence of E1 values of various polymers previously reported. It is considered for PET that the axial thermal molecular motions which cause the decrement of E1 do not take place in the crystalline regions, and that the force constant of bond stretching and that of bond angle bending are constant over both the temperature and the stress range studied. It is reasonable to conclude that the mechanical structure of drawn PET is composed of the series model.  相似文献   

7.
Composites with partially amorphous matrix were synthesized by mechanical alloying of an Al50Ti40Si10 elemental powder blend in a high energy planetary ball-mill, followed by high pressure (8 GPa) low temperature (350–450°C) sintering. Microstructural studies and compositional micro-analysis were carried out using scanning and transmission electron microscopy, and energy dispersive spectroscopy, respectively. Phase evolution as a function of milling time and isothermal temperature and their thermal stability was determined by X-ray diffraction at room or elevated temperature and differential scanning calorimetry, respectively. The microstructure of composites sintered between room temperature and 450°C showed nano-size (≈50 nm) crystalline precipitates of Al3Ti dispersed in an amorphous matrix. The composites sintered at 400°C with 8 GPa pressure exhibited the highest density (3.58 Mg/m3), nanoindentation hardness (8.8 GPa), Young's modulus (158 GPa) and compressive strength (1940 MPa). A lower hardness and modulus on sintering at 450°C is attributed to additional amorphous to nanocrystalline phase transformation and partial coarsening of Al3Ti.  相似文献   

8.
Antiferroelectric PbZrO3 thin films have been deposited on Pt(111)/Ti/SiO2/Si substrate by polymer modified sol–gel route. Temperature dependent PE hysteresis loops have been measured at 51 MV/m within a temperature range of 40 °C to 330 °C. The maximum electrocaloric effect ~0.224 × 10–6 K mV–1 has been observed near the dielectric phase transition temperature (235 °C) of the thin films. The electrocaloric effect and its strong temperature dependence have been attributed to nearly first‐order phase transition. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We studied the temperature dependence of the Raman spectrum of LiIO3, from room temperature up to t ~ 350°C. Two discontinuous changes in the spectrum are observed as temperature increases. The first one is reversible and occurs in a temperature range between 215°C and 260°C, depending upon sample origin (single crystal or powder) and thermal history. The second occurs at t ? 290°C and becomes irreversible once the samples are heated above 340°C. Each phase has a characteristic spectrum, distinct from that of the other two. Although the occurence of these phase changes are in complete agreement with studies made with X-ray diffraction and differential thermal analysis (DTA), it is at variance with previous Raman and infrared work which report no qualitative change in spectrum at the α ? γ phase transition. We believe this disagreement comes about because our measurements are the first ones so far to have actually passed through the transition.  相似文献   

10.
The Young’s moduli along the [100] and [110] crystallographic directions and the shear modulus along the [100] direction in a high-purity yttrium garnet ferrite single crystal are measured in the temperature range from 20 to 600°C. All the independent elastic constants are calculated for this temperature range. The behavior of the elastic moduli and elastic anisotropy factor is analyzed in the vicinity of the critical temperature of the magnetic phase transition.  相似文献   

11.
The temperature dependence of the piezoelectric stress-constant, the piezoelectric strain-constant, and the Young's elastic constant is simultaneously determined for homopolymers and copolymers of γ-benzyl-L-glutamate [Glu(OBz)] and L-leucine (Leu). With the rise of temperature, the piezoelectric constants first increase due to the elastic relaxation in the Leu side chains (about ?150°C) and the Glu(OBz) side chains (about ?10°C), and then decrease due to the dielectric relaxation in the Glu(OBz) side chains. Higher piezoelectric constants are observed for the copolymers at low temperatures. This suggests that the shear-induced internal strain of the peptide dipoles is enhanced by heterogenity in the structure of side chains.  相似文献   

12.
The steady state fluorescence (SSF) technique was used to study the sol-gel phase transition during free radical crosslinking copolymerisation of various amounts of acrylamide (AAm) and N-isopropylacrylamide (NIPA) mixtures. N,N′-methylenebis (acrylamide) (BIS) and ammonium persulfate (APS) were used as crosslinker and an initiator, respectively. Pyranine (8-hydroxypyrene-1, 3, 6-trisulfonic acid, trisodium salt, HPTS) was added as a fluoroprobe for monitoring the polymerisation. It was observed that pyranine molecules bind to AAm and NIPA chains upon the initiation of the polymerisation, thus the fluorescence spectra of the bonded pyranines shift to the shorter wavelengths. Fluorescence spectra from the bonded pyranines allowed us to monitor the sol-gel phase transition, without disturbing the system mechanically, and to test the universality of the sol-gel transition as a function of polymer concentration ratios. Observations around the gel point of PAAm–PNIPA mixtures show that the gel fraction exponent β obeyed the percolation result.  相似文献   

13.
The thermal behavior of a series of poly(α-olefin-co-maleic anhydride) copolymers was studied by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Polymers with side-chain lengths of 16, 18, and 23 carbons were found to have crystallizable side chains. The melting point and heat of fusion of the side chains increased with increasing side-chain length. Glass transition temperatures were observed to be greater than the side-chain melting points. The molecular weight dependence of the Tg's obeyed the Fox-Flory relationship, with Tg = 129°C and k = 1.5 × 105. A spectroscopic method to monitor the extent of hydrolysis of the maleic anhydride units was developed, and the hydrodynamic volume in THF was observed to be dependent on the extent of hydrolysis.  相似文献   

14.
Using a movable narrow beam of 9 GHz hypersound and wedge-shaped evaporated Ni films, the phase velocity and attenuation of longitudinal as well as of transverse hypersound was determined at a temperature of 2 K by multiple-beam interferometry in these Ni films. They were evaporated onto a quartz substrate at substrate temperatures ranging from 50°C to 500°C. The macroscopic moduliK (bulk modulus) andG (shear modulus) can be obtained from the measured phase velocities. WhereasK appears independent on substrate temperature and agrees within experimental error with theoretical prediction deduced from known elastic constants of the crystallites, the observed shear modulusG possesses at a substrate temperature of 50°C only 2/3 of the predicted value and increases with substrate temperature by reaching the theoretical value at about 300°C.  相似文献   

15.
In this article, we have investigated the high-pressure structural phase transition of erbium pnictides (ErX; X?=?N, P and As). An extended interaction potential model has been developed (including the zero-point energy effect in three-body interaction potential model). Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses have been predicted successfully. The elastic constants, their combinations and pressure derivatives are also reported. The pressure behaviour of elastic constants, bulk modulus and shear modulus have been presented and discussed. Moreover, the thermophysical properties such as molecular force constant (f), infrared absorption frequency (υ 0), Debye temperature (θ D) and Grunneisen parameter (γ) have also been predicted.  相似文献   

16.
Precision X-ray studies of the temperature dependence for the CH4 lattice parameter were carried out in the 14–23°K range. Samples of equilibrium spin-modification composition reveals a volume jump of about 0.12 percent at 18 ± 0.1°K. This phase transition has been found to be essentially affected by inter-modification conversion.  相似文献   

17.
The low-temperature fracture of a high-temperature low-activated ferritic-martensitic EK-181 chromium (12%) steel (RUSFER-EK-181: Fe-12Cr-2W-V-Ta-B) is studied using impact and static concentrated bending tests as a function of the specimen dimensions (standard, small), the type of stress concentrator (V-shaped notch, fatigue crack), and the temperature (from −196 to +100°C). The ductile-brittle transition temperature falls in the range from −85 to +35°C. The temperature dependences of stress-intensity factor K Ic and fracture toughness J Ic are determined. The severest type of impact toughness tests is represented by tests of V-notched specimens with an additional fatigue crack and two lateral V-shaped notches (three-sided V-shaped notch with a central fatigue crack). The fracture energy of the steel depends on the type of stress concentrator and the specimen dimensions and is determined by the elastic energy and the plastic deformation conditions in the near-surface layers of a specimen, which are controlled by the lateral notches. At the same test temperature, the impact toughness and the fracture toughness are interrelated. Irrespective of the type of specimen (including notches and a fatigue crack), the ferritic-martensitic steel exhibits the same fracture mechanism.  相似文献   

18.
Structural phase transitions in BaCeO3 have been investigated with combination of differential scanning calorimetry (DSC), dilatometry and high temperature X-ray diffraction with high sensitivity and resolution. In DSC curve at heating procedures, baseline shift, endothermic peak and another baseline shift were observed at 260 °C, 385 °C and 895 °C, respectively. From DSC curve at cooling procedure, it was revealed that all the baseline shifts and peak were reversible. No hysteresis was observed in the both baseline shifts indicating second order phase transition at 260 °C and 895 °C with variation of specific heat capacity, ΔCp, of 10 J/mol K and 7 J/mol K, respectively; whereas the order of the phase transition at 385 °C was revealed to be the first since hysteresis was detected around 370–385 °C. Variation of enthalpy, ΔH, at the phase transition was 45 J/mol. High temperature X-ray diffraction measurements have revealed that the crystal structure of BaCeO3 changes from primitive orthorhombic perovskite through body-centered one, rhombohedral distorted one to cubic one around 280 °C, 400 °C and 900 °C, showing correspondence with DSC curves. Dependence of molar volume on temperature estimated from high temperature X-ray diffraction showed agreement with thermal expansion behavior observed with dilatometry.  相似文献   

19.
Microstructural characteristics and amplitude dependences of the Young modulus E and of internal friction (logarithmic decrement δ) of bio-carbon matrices prepared from beech tree wood at different carbonization temperatures T carb ranging from 600 to 1600°C have been studied. The dependences E(T carb) and δ(T carb) thus obtained revealed two linear regions of increase of the Young modulus and of decrease of the decrement with increasing carbonization temperature, namely, ΔEAΔT carb and Δδ ~ BΔT carb, with A ≈ 13.4 MPa/K and B ≈ ?2.2 × 10?6 K?1 for T carb < 1000°C and A ≈ 2.5 MPa/K and B ≈ ?3.0 × 10?7 K?1 for T carb > 1000°C. The transition observed in the behavior of E(T carb) and δ(T carb) at T carb = 900–1000°C can be assigned to a change of sample microstructure, more specifically, a change in the ratio of the fractions of the amorphous matrix and of the nanocrystalline phase. For T carb < 1000°C, the elastic properties are governed primarily by the amorphous matrix, whereas for T carb > 1000°C the nanocrystalline phase plays the dominant part. The structurally induced transition in the behavior of the elastic and microplastic characteristics at a temperature close to 1000°C correlates with the variation of the physical properties, such as electrical conductivity, thermal conductivity, and thermopower, reported in the literature.  相似文献   

20.
An ultracryostat and multidecameter were used to determine the temperature dependence of the dielectric constant ?′ and dielectric loss ?″ over a wide range of frequencies of single crystals and polycrystalline samples of (NH4)2SO4 in the region of the low temperature phase transition. A sharp increase was observed in the values of ?′ and ?″ at about ?50°C. In addition, a dielectric dispersion was detected and found to be more pronounced in the high temperature phase. This dispersion was attributed to piezoelectric resonance. The observed sudden increase in the values of the dielectric constant and dielectric loss below ? 50°C was attributed to the ferroelectric nature of the low temperature phase of (NH4)2SO4.A DTA thermogram showed a sharp peak at ? 50°C which indicated that the phase transition is one of first order type. A TMA thermogram showed that this transformation was associated with a rapid increase in the expansion coefficient. Such an increase in the lattice parameter might be attributed to the enhanced rotation of electric dipoles associated with the distorted NH4+ and SO42? ions. The distortion of both the ammonium and sulfate ions in addition to their expected orientational motion are suggested to be responsible for the ferroelectric behaviour of ammonium sulfate below ?50°C.A transition to a metastable hexagonal state at about ?40°C is thought to occur, and this transformation is found to be irreversible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号